File size: 6,101 Bytes
eaa7278 cc6764a eaa7278 6c6979e eaa7278 c79fb12 eaa7278 cc6764a eaa7278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
base_model: LLaMAX/LLaMAX2-7B-X-CSQA
language:
- af
- am
- ar
- hy
- as
- ast
- az
- be
- bn
- bs
- bg
- my
- ca
- ceb
- zho
- hr
- cs
- da
- nl
- en
- et
- tl
- fi
- fr
- ff
- gl
- lg
- ka
- de
- el
- gu
- ha
- he
- hi
- hu
- is
- ig
- id
- ga
- it
- ja
- jv
- kea
- kam
- kn
- kk
- km
- ko
- ky
- lo
- lv
- ln
- lt
- luo
- lb
- mk
- ms
- ml
- mt
- mi
- mr
- mn
- ne
- ns
- no
- ny
- oc
- or
- om
- ps
- fa
- pl
- pt
- pa
- ro
- ru
- sr
- sn
- sd
- sk
- sl
- so
- ku
- es
- sw
- sv
- tg
- ta
- te
- th
- tr
- uk
- umb
- ur
- uz
- vi
- cy
- wo
- xh
- yo
- zu
library_name: transformers
license: mit
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- Multilingual
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/LLaMAX/LLaMAX2-7B-X-CSQA
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#LLaMAX2-7B-X-CSQA-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ1_S.gguf) | i1-IQ1_S | 1.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.1 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.4 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ2_M.gguf) | i1-IQ2_M | 2.5 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.9 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q4_0.gguf) | i1-Q4_0 | 3.9 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.0 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q4_1.gguf) | i1-Q4_1 | 4.3 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/LLaMAX2-7B-X-CSQA-i1-GGUF/resolve/main/LLaMAX2-7B-X-CSQA.i1-Q6_K.gguf) | i1-Q6_K | 5.6 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|