mradermacher commited on
Commit
0991d82
·
verified ·
1 Parent(s): 63b984a

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md CHANGED
@@ -1,6 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Edentns/DataVortexTL-1.1B-v0.1
3
+ datasets:
4
+ - beomi/KoAlpaca-v1.1a
5
+ - jojo0217/korean_rlhf_dataset
6
+ - kyujinpy/OpenOrca-KO
7
+ - nlpai-lab/kullm-v2
8
+ language:
9
+ - ko
10
+ library_name: transformers
11
+ license: cc-by-nc-sa-4.0
12
+ quantized_by: mradermacher
13
+ tags:
14
+ - text-generation
15
+ ---
16
+ ## About
17
+
18
  <!-- ### quantize_version: 2 -->
19
  <!-- ### output_tensor_quantised: 1 -->
20
  <!-- ### convert_type: hf -->
21
  <!-- ### vocab_type: -->
22
  <!-- ### tags: nicoboss -->
23
  weighted/imatrix quants of https://huggingface.co/Edentns/DataVortexTL-1.1B-v0.1
24
+
25
+ <!-- provided-files -->
26
+ static quants are available at https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-GGUF
27
+ ## Usage
28
+
29
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
30
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
31
+ more details, including on how to concatenate multi-part files.
32
+
33
+ ## Provided Quants
34
+
35
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
36
+
37
+ | Link | Type | Size/GB | Notes |
38
+ |:-----|:-----|--------:|:------|
39
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 0.4 | for the desperate |
40
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 0.4 | mostly desperate |
41
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.4 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.5 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 0.5 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 0.5 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q2_K.gguf) | i1-Q2_K | 0.5 | IQ3_XXS probably better |
46
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.5 | lower quality |
47
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.6 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.6 | IQ3_XS probably better |
49
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 0.6 | beats Q3_K* |
50
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 0.6 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.6 | IQ3_S probably better |
52
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.7 | IQ3_M probably better |
53
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.7 | |
54
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 0.7 | fast on arm, low quality |
55
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 0.7 | fast on arm+i8mm, low quality |
56
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 0.7 | fast on arm+sve, low quality |
57
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q4_0.gguf) | i1-Q4_0 | 0.7 | fast, low quality |
58
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.7 | optimal size/speed/quality |
59
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.8 | fast, recommended |
60
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.9 | |
61
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.9 | |
62
+ | [GGUF](https://huggingface.co/mradermacher/DataVortexTL-1.1B-v0.1-i1-GGUF/resolve/main/DataVortexTL-1.1B-v0.1.i1-Q6_K.gguf) | i1-Q6_K | 1.0 | practically like static Q6_K |
63
+
64
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
65
+ types (lower is better):
66
+
67
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
68
+
69
+ And here are Artefact2's thoughts on the matter:
70
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
71
+
72
+ ## FAQ / Model Request
73
+
74
+ See https://huggingface.co/mradermacher/model_requests for some answers to
75
+ questions you might have and/or if you want some other model quantized.
76
+
77
+ ## Thanks
78
+
79
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
80
+ me use its servers and providing upgrades to my workstation to enable
81
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
82
+
83
+ <!-- end -->