--- license: apache-2.0 tags: - llm - mozihe - agv - defect-detection - chinese - english - transformers - ollama model_name: agv_llm base_model: meta-llama/Llama-3.1-8B library_name: transformers --- # 📄 AGV-LLM > **Small enough to self-host, smart enough to 写巡检报告,分析缺陷数据** > 8 B bilingual model fine-tuned for **tunnel-defect description** & **work-order drafting**. > Works in both **Transformers** and **Ollama**. --- ## ✨ Highlights | Feature | Details | | ------- | ------- | | 🔧 **Domain-specific** | 56 K 巡检对话 / 工单指令数据 / 数据分析 | | 🧑‍🏫 **LoRA fine-tuned** | QLoRA-NF4, Rank 8, α = 16 | | 🈶 **Bilingual** | 中文 ↔ English | | ⚡ **Fast** | ~15 tok/s on RTX 4090 (fp16) | | 📦 **Drop-in** | `AutoModelForCausalLM` **or** `ollama pull mozihe/agv_llm` | --- ## 🛠️ Usage ### Transformers ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch, textwrap tok = AutoTokenizer.from_pretrained("mozihe/agv_llm") model = AutoModelForCausalLM.from_pretrained( "mozihe/agv_llm", torch_dtype=torch.float16, device_map="auto" ) prompt = ( "请根据以下检测框信息,生成缺陷描述和整改建议:\\n" "位置:x=12.3,y=1.2,z=7.8\\n种类:裂缝\\n置信度:0.87" ) inputs = tok(prompt, return_tensors="pt").to(model.device) out = model.generate(**inputs, max_new_tokens=256, temperature=0.3) print(textwrap.fill(tok.decode(out[0], skip_special_tokens=True), 80)) ``` ### Ollama 1. 构建本地模型并命名: ```bash ollama create agv_llm -f Modelfile ``` 2. 运行: ``` ollama run agv_llm ``` > 说明 > - `ADAPTER` 行既支持远程 Hugging Face 路径,也支持 `file://` 本地 .safetensors。 > - 更多 Modelfile 指令见 --- ## 📚 Training Details | Item | Value | | ---- | ----- | | Base | Llama-3.1-8B | | Method | QLoRA (bitsandbytes NF4) | | Steps | 25 epochs | | LR / Scheduler | 1e-4 / cosine | | Context | 4 096 tokens | | Precision | bfloat16 | | Hardware | 4 × A100-80 GB | --- ## ✅ Intended Use * YOLO 检出 → 结构化缺陷描述 * 生成整改建议 / 工单标题 / 优先级 * 巡检知识库问答(RAG + Ollama) ### ❌ Out-of-scope * 医疗 / 法律结论 * 任何未经人工复核的安全决策 --- ## ⚠️ Limitations * 8 B 参数 ≠ GPT-4 级别推理深度 * 训练域集中在隧道场景,泛化到其他土木结构有限 * 多语种(非中英)支持较弱 --- ## 📄 Citation ```text @misc{mozihe2025agvllm, title = {AGV-LLM: A Domain LLM for Tunnel Inspection}, author = {Zhu, Junheng}, year = {2025}, url = {https://huggingface.co/mozihe/agv_llm} } ``` --- ## 📝 License Apache 2.0 — 商用、私有部署皆可,保留版权与许可证即可。 若本模型帮你省掉一次组会汇报(不包ppt),欢迎 ⭐!