upload
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +30 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- trainer_state.json +1888 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/lustre/fsn1/projects/rech/gkb/uua32zb/grand_challenge/checkpoints/Qwen__Qwen2.5-1.5B-annealing_continual-0.0002LR-8192CL-2GAS-2BS-1EPOCHS-0.9BETA1-0.95BETA2/",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8960,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_mrope": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.46.1"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step13267
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4b5b37446d5d6a79e85a543dc616b531a8701e7e7a53d275b8aaa67eda91543
|
3 |
+
size 3554214752
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500.0,
|
6 |
+
"global_step": 13267,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.003768749528906309,
|
13 |
+
"grad_norm": 0.35509032011032104,
|
14 |
+
"learning_rate": 9.999649547444612e-05,
|
15 |
+
"loss": 0.5094,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.007537499057812618,
|
20 |
+
"grad_norm": 0.3374439477920532,
|
21 |
+
"learning_rate": 9.998598238905239e-05,
|
22 |
+
"loss": 0.4888,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.011306248586718927,
|
27 |
+
"grad_norm": 0.3017200827598572,
|
28 |
+
"learning_rate": 9.996846221755392e-05,
|
29 |
+
"loss": 0.4871,
|
30 |
+
"step": 150
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.015074998115625236,
|
34 |
+
"grad_norm": 0.29322266578674316,
|
35 |
+
"learning_rate": 9.994393741594623e-05,
|
36 |
+
"loss": 0.4899,
|
37 |
+
"step": 200
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.018843747644531544,
|
41 |
+
"grad_norm": 0.3081373870372772,
|
42 |
+
"learning_rate": 9.99124114221411e-05,
|
43 |
+
"loss": 0.4896,
|
44 |
+
"step": 250
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.022612497173437853,
|
48 |
+
"grad_norm": 0.29016199707984924,
|
49 |
+
"learning_rate": 9.987388865548454e-05,
|
50 |
+
"loss": 0.4889,
|
51 |
+
"step": 300
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.026381246702344163,
|
55 |
+
"grad_norm": 0.265391081571579,
|
56 |
+
"learning_rate": 9.982837451613738e-05,
|
57 |
+
"loss": 0.4898,
|
58 |
+
"step": 350
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.030149996231250472,
|
62 |
+
"grad_norm": 0.27272671461105347,
|
63 |
+
"learning_rate": 9.977587538431816e-05,
|
64 |
+
"loss": 0.4894,
|
65 |
+
"step": 400
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.03391874576015678,
|
69 |
+
"grad_norm": 0.28726664185523987,
|
70 |
+
"learning_rate": 9.971639861940889e-05,
|
71 |
+
"loss": 0.4869,
|
72 |
+
"step": 450
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.03768749528906309,
|
76 |
+
"grad_norm": 0.28651759028434753,
|
77 |
+
"learning_rate": 9.964995255892323e-05,
|
78 |
+
"loss": 0.4912,
|
79 |
+
"step": 500
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.0414562448179694,
|
83 |
+
"grad_norm": 0.24553848803043365,
|
84 |
+
"learning_rate": 9.957654651733788e-05,
|
85 |
+
"loss": 0.4897,
|
86 |
+
"step": 550
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.045224994346875706,
|
90 |
+
"grad_norm": 0.24010591208934784,
|
91 |
+
"learning_rate": 9.949619078478677e-05,
|
92 |
+
"loss": 0.4866,
|
93 |
+
"step": 600
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.048993743875782016,
|
97 |
+
"grad_norm": 0.26084381341934204,
|
98 |
+
"learning_rate": 9.940889662561864e-05,
|
99 |
+
"loss": 0.4892,
|
100 |
+
"step": 650
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.052762493404688325,
|
104 |
+
"grad_norm": 0.2248304784297943,
|
105 |
+
"learning_rate": 9.931467627681792e-05,
|
106 |
+
"loss": 0.4849,
|
107 |
+
"step": 700
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.056531242933594635,
|
111 |
+
"grad_norm": 0.23623178899288177,
|
112 |
+
"learning_rate": 9.921354294628944e-05,
|
113 |
+
"loss": 0.4852,
|
114 |
+
"step": 750
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.060299992462500944,
|
118 |
+
"grad_norm": 0.23275640606880188,
|
119 |
+
"learning_rate": 9.910551081100684e-05,
|
120 |
+
"loss": 0.4855,
|
121 |
+
"step": 800
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.06406874199140725,
|
125 |
+
"grad_norm": 0.22925056517124176,
|
126 |
+
"learning_rate": 9.899059501502526e-05,
|
127 |
+
"loss": 0.4849,
|
128 |
+
"step": 850
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.06783749152031356,
|
132 |
+
"grad_norm": 0.23725946247577667,
|
133 |
+
"learning_rate": 9.886881166735846e-05,
|
134 |
+
"loss": 0.4839,
|
135 |
+
"step": 900
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.07160624104921987,
|
139 |
+
"grad_norm": 0.2293645143508911,
|
140 |
+
"learning_rate": 9.874017783972058e-05,
|
141 |
+
"loss": 0.486,
|
142 |
+
"step": 950
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.07537499057812617,
|
146 |
+
"grad_norm": 0.24602073431015015,
|
147 |
+
"learning_rate": 9.860471156413309e-05,
|
148 |
+
"loss": 0.4835,
|
149 |
+
"step": 1000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.07914374010703248,
|
153 |
+
"grad_norm": 0.20568886399269104,
|
154 |
+
"learning_rate": 9.846243183039694e-05,
|
155 |
+
"loss": 0.4838,
|
156 |
+
"step": 1050
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.0829124896359388,
|
160 |
+
"grad_norm": 0.2165093570947647,
|
161 |
+
"learning_rate": 9.831335858343064e-05,
|
162 |
+
"loss": 0.4827,
|
163 |
+
"step": 1100
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.0866812391648451,
|
167 |
+
"grad_norm": 0.2424800992012024,
|
168 |
+
"learning_rate": 9.815751272047434e-05,
|
169 |
+
"loss": 0.4832,
|
170 |
+
"step": 1150
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.09044998869375141,
|
174 |
+
"grad_norm": 0.207057386636734,
|
175 |
+
"learning_rate": 9.79949160881604e-05,
|
176 |
+
"loss": 0.4809,
|
177 |
+
"step": 1200
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.09421873822265772,
|
181 |
+
"grad_norm": 0.21975122392177582,
|
182 |
+
"learning_rate": 9.782559147945094e-05,
|
183 |
+
"loss": 0.4827,
|
184 |
+
"step": 1250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.09798748775156403,
|
188 |
+
"grad_norm": 0.21343478560447693,
|
189 |
+
"learning_rate": 9.76495626304427e-05,
|
190 |
+
"loss": 0.4812,
|
191 |
+
"step": 1300
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.10175623728047034,
|
195 |
+
"grad_norm": 0.20896418392658234,
|
196 |
+
"learning_rate": 9.746685421703961e-05,
|
197 |
+
"loss": 0.4792,
|
198 |
+
"step": 1350
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.10552498680937665,
|
202 |
+
"grad_norm": 0.2270091027021408,
|
203 |
+
"learning_rate": 9.727749185149388e-05,
|
204 |
+
"loss": 0.4795,
|
205 |
+
"step": 1400
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.10929373633828296,
|
209 |
+
"grad_norm": 0.2058868557214737,
|
210 |
+
"learning_rate": 9.708150207881543e-05,
|
211 |
+
"loss": 0.4794,
|
212 |
+
"step": 1450
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.11306248586718927,
|
216 |
+
"grad_norm": 0.19969668984413147,
|
217 |
+
"learning_rate": 9.687891237305096e-05,
|
218 |
+
"loss": 0.4803,
|
219 |
+
"step": 1500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.11683123539609558,
|
223 |
+
"grad_norm": 0.19804421067237854,
|
224 |
+
"learning_rate": 9.666975113343246e-05,
|
225 |
+
"loss": 0.4782,
|
226 |
+
"step": 1550
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.12059998492500189,
|
230 |
+
"grad_norm": 0.19650672376155853,
|
231 |
+
"learning_rate": 9.645404768039633e-05,
|
232 |
+
"loss": 0.4773,
|
233 |
+
"step": 1600
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.1243687344539082,
|
237 |
+
"grad_norm": 0.20196650922298431,
|
238 |
+
"learning_rate": 9.623183225147308e-05,
|
239 |
+
"loss": 0.4769,
|
240 |
+
"step": 1650
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.1281374839828145,
|
244 |
+
"grad_norm": 0.20083576440811157,
|
245 |
+
"learning_rate": 9.600313599704869e-05,
|
246 |
+
"loss": 0.4748,
|
247 |
+
"step": 1700
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.13190623351172082,
|
251 |
+
"grad_norm": 0.19036008417606354,
|
252 |
+
"learning_rate": 9.576799097599786e-05,
|
253 |
+
"loss": 0.4751,
|
254 |
+
"step": 1750
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.1356749830406271,
|
258 |
+
"grad_norm": 0.20416900515556335,
|
259 |
+
"learning_rate": 9.552643015118998e-05,
|
260 |
+
"loss": 0.4727,
|
261 |
+
"step": 1800
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.13944373256953344,
|
265 |
+
"grad_norm": 0.19550226628780365,
|
266 |
+
"learning_rate": 9.527848738486842e-05,
|
267 |
+
"loss": 0.4731,
|
268 |
+
"step": 1850
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.14321248209843973,
|
272 |
+
"grad_norm": 0.20287151634693146,
|
273 |
+
"learning_rate": 9.502419743390357e-05,
|
274 |
+
"loss": 0.4745,
|
275 |
+
"step": 1900
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.14698123162734605,
|
279 |
+
"grad_norm": 0.18741615116596222,
|
280 |
+
"learning_rate": 9.476359594492068e-05,
|
281 |
+
"loss": 0.4734,
|
282 |
+
"step": 1950
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.15074998115625235,
|
286 |
+
"grad_norm": 0.20605124533176422,
|
287 |
+
"learning_rate": 9.449671944930288e-05,
|
288 |
+
"loss": 0.4732,
|
289 |
+
"step": 2000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.15451873068515867,
|
293 |
+
"grad_norm": 0.20259861648082733,
|
294 |
+
"learning_rate": 9.422360535807009e-05,
|
295 |
+
"loss": 0.4745,
|
296 |
+
"step": 2050
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.15828748021406497,
|
300 |
+
"grad_norm": 0.19558943808078766,
|
301 |
+
"learning_rate": 9.394429195663478e-05,
|
302 |
+
"loss": 0.4723,
|
303 |
+
"step": 2100
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.1620562297429713,
|
307 |
+
"grad_norm": 0.20177054405212402,
|
308 |
+
"learning_rate": 9.365881839943508e-05,
|
309 |
+
"loss": 0.4699,
|
310 |
+
"step": 2150
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.1658249792718776,
|
314 |
+
"grad_norm": 0.20023804903030396,
|
315 |
+
"learning_rate": 9.336722470444604e-05,
|
316 |
+
"loss": 0.4719,
|
317 |
+
"step": 2200
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.1695937288007839,
|
321 |
+
"grad_norm": 0.19571995735168457,
|
322 |
+
"learning_rate": 9.306955174756985e-05,
|
323 |
+
"loss": 0.4708,
|
324 |
+
"step": 2250
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.1733624783296902,
|
328 |
+
"grad_norm": 0.18980449438095093,
|
329 |
+
"learning_rate": 9.27658412569059e-05,
|
330 |
+
"loss": 0.4697,
|
331 |
+
"step": 2300
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.17713122785859653,
|
335 |
+
"grad_norm": 0.18121857941150665,
|
336 |
+
"learning_rate": 9.24561358069012e-05,
|
337 |
+
"loss": 0.4692,
|
338 |
+
"step": 2350
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.18089997738750282,
|
342 |
+
"grad_norm": 0.18635448813438416,
|
343 |
+
"learning_rate": 9.214047881238233e-05,
|
344 |
+
"loss": 0.4682,
|
345 |
+
"step": 2400
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.18466872691640915,
|
349 |
+
"grad_norm": 0.18292276561260223,
|
350 |
+
"learning_rate": 9.181891452246937e-05,
|
351 |
+
"loss": 0.4717,
|
352 |
+
"step": 2450
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.18843747644531544,
|
356 |
+
"grad_norm": 0.4070293605327606,
|
357 |
+
"learning_rate": 9.149148801437321e-05,
|
358 |
+
"loss": 0.4685,
|
359 |
+
"step": 2500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.19220622597422174,
|
363 |
+
"grad_norm": 0.19017393887043,
|
364 |
+
"learning_rate": 9.115824518707644e-05,
|
365 |
+
"loss": 0.4675,
|
366 |
+
"step": 2550
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.19597497550312806,
|
370 |
+
"grad_norm": 0.2028086632490158,
|
371 |
+
"learning_rate": 9.08192327548992e-05,
|
372 |
+
"loss": 0.4668,
|
373 |
+
"step": 2600
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.19974372503203436,
|
377 |
+
"grad_norm": 0.18879903852939606,
|
378 |
+
"learning_rate": 9.047449824095075e-05,
|
379 |
+
"loss": 0.466,
|
380 |
+
"step": 2650
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.20351247456094068,
|
384 |
+
"grad_norm": 0.18708941340446472,
|
385 |
+
"learning_rate": 9.012408997046766e-05,
|
386 |
+
"loss": 0.467,
|
387 |
+
"step": 2700
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.20728122408984698,
|
391 |
+
"grad_norm": 0.18148259818553925,
|
392 |
+
"learning_rate": 8.976805706403942e-05,
|
393 |
+
"loss": 0.4657,
|
394 |
+
"step": 2750
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.2110499736187533,
|
398 |
+
"grad_norm": 0.18493063747882843,
|
399 |
+
"learning_rate": 8.94064494307228e-05,
|
400 |
+
"loss": 0.4638,
|
401 |
+
"step": 2800
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.2148187231476596,
|
405 |
+
"grad_norm": 0.18034948408603668,
|
406 |
+
"learning_rate": 8.903931776104545e-05,
|
407 |
+
"loss": 0.4624,
|
408 |
+
"step": 2850
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.21858747267656592,
|
412 |
+
"grad_norm": 0.18979419767856598,
|
413 |
+
"learning_rate": 8.866671351990007e-05,
|
414 |
+
"loss": 0.4629,
|
415 |
+
"step": 2900
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.22235622220547221,
|
419 |
+
"grad_norm": 0.18408875167369843,
|
420 |
+
"learning_rate": 8.82886889393301e-05,
|
421 |
+
"loss": 0.4638,
|
422 |
+
"step": 2950
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.22612497173437854,
|
426 |
+
"grad_norm": 0.17015992105007172,
|
427 |
+
"learning_rate": 8.790529701120759e-05,
|
428 |
+
"loss": 0.4608,
|
429 |
+
"step": 3000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.22989372126328483,
|
433 |
+
"grad_norm": 0.17827536165714264,
|
434 |
+
"learning_rate": 8.751659147980493e-05,
|
435 |
+
"loss": 0.4635,
|
436 |
+
"step": 3050
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.23366247079219116,
|
440 |
+
"grad_norm": 0.1894233673810959,
|
441 |
+
"learning_rate": 8.712262683426082e-05,
|
442 |
+
"loss": 0.4593,
|
443 |
+
"step": 3100
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.23743122032109745,
|
447 |
+
"grad_norm": 0.19764114916324615,
|
448 |
+
"learning_rate": 8.672345830094199e-05,
|
449 |
+
"loss": 0.4622,
|
450 |
+
"step": 3150
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.24119996985000378,
|
454 |
+
"grad_norm": 0.18290351331233978,
|
455 |
+
"learning_rate": 8.631914183570143e-05,
|
456 |
+
"loss": 0.4608,
|
457 |
+
"step": 3200
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.24496871937891007,
|
461 |
+
"grad_norm": 0.18013353645801544,
|
462 |
+
"learning_rate": 8.590973411603452e-05,
|
463 |
+
"loss": 0.4601,
|
464 |
+
"step": 3250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.2487374689078164,
|
468 |
+
"grad_norm": 0.17729552090168,
|
469 |
+
"learning_rate": 8.549529253313386e-05,
|
470 |
+
"loss": 0.4611,
|
471 |
+
"step": 3300
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.2525062184367227,
|
475 |
+
"grad_norm": 0.1892414540052414,
|
476 |
+
"learning_rate": 8.507587518384421e-05,
|
477 |
+
"loss": 0.4583,
|
478 |
+
"step": 3350
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.256274967965629,
|
482 |
+
"grad_norm": 0.17193005979061127,
|
483 |
+
"learning_rate": 8.465154086251828e-05,
|
484 |
+
"loss": 0.4572,
|
485 |
+
"step": 3400
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.2600437174945353,
|
489 |
+
"grad_norm": 0.18148685991764069,
|
490 |
+
"learning_rate": 8.422234905277495e-05,
|
491 |
+
"loss": 0.4583,
|
492 |
+
"step": 3450
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.26381246702344163,
|
496 |
+
"grad_norm": 0.19143982231616974,
|
497 |
+
"learning_rate": 8.378835991916083e-05,
|
498 |
+
"loss": 0.4582,
|
499 |
+
"step": 3500
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.26758121655234796,
|
503 |
+
"grad_norm": 0.18079186975955963,
|
504 |
+
"learning_rate": 8.334963429871627e-05,
|
505 |
+
"loss": 0.4599,
|
506 |
+
"step": 3550
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.2713499660812542,
|
510 |
+
"grad_norm": 0.17887386679649353,
|
511 |
+
"learning_rate": 8.290623369244721e-05,
|
512 |
+
"loss": 0.4574,
|
513 |
+
"step": 3600
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.27511871561016055,
|
517 |
+
"grad_norm": 0.17481209337711334,
|
518 |
+
"learning_rate": 8.245822025670384e-05,
|
519 |
+
"loss": 0.4588,
|
520 |
+
"step": 3650
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.27888746513906687,
|
524 |
+
"grad_norm": 0.17591702938079834,
|
525 |
+
"learning_rate": 8.200565679446753e-05,
|
526 |
+
"loss": 0.4543,
|
527 |
+
"step": 3700
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.2826562146679732,
|
531 |
+
"grad_norm": 0.17434370517730713,
|
532 |
+
"learning_rate": 8.154860674654698e-05,
|
533 |
+
"loss": 0.4552,
|
534 |
+
"step": 3750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.28642496419687946,
|
538 |
+
"grad_norm": 0.17741286754608154,
|
539 |
+
"learning_rate": 8.108713418268514e-05,
|
540 |
+
"loss": 0.4551,
|
541 |
+
"step": 3800
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.2901937137257858,
|
545 |
+
"grad_norm": 0.1794031709432602,
|
546 |
+
"learning_rate": 8.062130379257764e-05,
|
547 |
+
"loss": 0.4557,
|
548 |
+
"step": 3850
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.2939624632546921,
|
552 |
+
"grad_norm": 0.17624689638614655,
|
553 |
+
"learning_rate": 8.015118087680477e-05,
|
554 |
+
"loss": 0.4558,
|
555 |
+
"step": 3900
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.2977312127835984,
|
559 |
+
"grad_norm": 0.173648402094841,
|
560 |
+
"learning_rate": 7.96768313376774e-05,
|
561 |
+
"loss": 0.4519,
|
562 |
+
"step": 3950
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.3014999623125047,
|
566 |
+
"grad_norm": 0.17087939381599426,
|
567 |
+
"learning_rate": 7.919832166999874e-05,
|
568 |
+
"loss": 0.454,
|
569 |
+
"step": 4000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.305268711841411,
|
573 |
+
"grad_norm": 0.1744805872440338,
|
574 |
+
"learning_rate": 7.871571895174316e-05,
|
575 |
+
"loss": 0.4511,
|
576 |
+
"step": 4050
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.30903746137031735,
|
580 |
+
"grad_norm": 0.1831275224685669,
|
581 |
+
"learning_rate": 7.822909083465298e-05,
|
582 |
+
"loss": 0.4537,
|
583 |
+
"step": 4100
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.3128062108992236,
|
587 |
+
"grad_norm": 0.17621232569217682,
|
588 |
+
"learning_rate": 7.773850553475508e-05,
|
589 |
+
"loss": 0.4506,
|
590 |
+
"step": 4150
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.31657496042812994,
|
594 |
+
"grad_norm": 0.1809280514717102,
|
595 |
+
"learning_rate": 7.724403182279823e-05,
|
596 |
+
"loss": 0.4537,
|
597 |
+
"step": 4200
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.32034370995703626,
|
601 |
+
"grad_norm": 0.18568743765354156,
|
602 |
+
"learning_rate": 7.674573901461282e-05,
|
603 |
+
"loss": 0.4484,
|
604 |
+
"step": 4250
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.3241124594859426,
|
608 |
+
"grad_norm": 0.17346200346946716,
|
609 |
+
"learning_rate": 7.624369696139402e-05,
|
610 |
+
"loss": 0.4492,
|
611 |
+
"step": 4300
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.32788120901484885,
|
615 |
+
"grad_norm": 0.16987943649291992,
|
616 |
+
"learning_rate": 7.573797603991004e-05,
|
617 |
+
"loss": 0.4511,
|
618 |
+
"step": 4350
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.3316499585437552,
|
622 |
+
"grad_norm": 0.1740700751543045,
|
623 |
+
"learning_rate": 7.522864714263655e-05,
|
624 |
+
"loss": 0.4504,
|
625 |
+
"step": 4400
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.3354187080726615,
|
629 |
+
"grad_norm": 0.18099980056285858,
|
630 |
+
"learning_rate": 7.471578166781899e-05,
|
631 |
+
"loss": 0.4509,
|
632 |
+
"step": 4450
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.3391874576015678,
|
636 |
+
"grad_norm": 0.1742471605539322,
|
637 |
+
"learning_rate": 7.419945150946386e-05,
|
638 |
+
"loss": 0.4482,
|
639 |
+
"step": 4500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.3429562071304741,
|
643 |
+
"grad_norm": 0.17314079403877258,
|
644 |
+
"learning_rate": 7.367972904726055e-05,
|
645 |
+
"loss": 0.4497,
|
646 |
+
"step": 4550
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.3467249566593804,
|
650 |
+
"grad_norm": 0.1672036498785019,
|
651 |
+
"learning_rate": 7.3156687136435e-05,
|
652 |
+
"loss": 0.4476,
|
653 |
+
"step": 4600
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.35049370618828674,
|
657 |
+
"grad_norm": 0.1716027557849884,
|
658 |
+
"learning_rate": 7.26303990975369e-05,
|
659 |
+
"loss": 0.4484,
|
660 |
+
"step": 4650
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.35426245571719306,
|
664 |
+
"grad_norm": 0.16599993407726288,
|
665 |
+
"learning_rate": 7.210093870616155e-05,
|
666 |
+
"loss": 0.4478,
|
667 |
+
"step": 4700
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.3580312052460993,
|
671 |
+
"grad_norm": 0.16980785131454468,
|
672 |
+
"learning_rate": 7.156838018260776e-05,
|
673 |
+
"loss": 0.4468,
|
674 |
+
"step": 4750
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.36179995477500565,
|
678 |
+
"grad_norm": 0.17415867745876312,
|
679 |
+
"learning_rate": 7.103279818147371e-05,
|
680 |
+
"loss": 0.4444,
|
681 |
+
"step": 4800
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.365568704303912,
|
685 |
+
"grad_norm": 0.17735563218593597,
|
686 |
+
"learning_rate": 7.049426778119179e-05,
|
687 |
+
"loss": 0.4454,
|
688 |
+
"step": 4850
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.3693374538328183,
|
692 |
+
"grad_norm": 0.1772989183664322,
|
693 |
+
"learning_rate": 6.995286447350397e-05,
|
694 |
+
"loss": 0.4456,
|
695 |
+
"step": 4900
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.37310620336172456,
|
699 |
+
"grad_norm": 0.17225749790668488,
|
700 |
+
"learning_rate": 6.940866415287931e-05,
|
701 |
+
"loss": 0.4453,
|
702 |
+
"step": 4950
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.3768749528906309,
|
706 |
+
"grad_norm": 0.16734232008457184,
|
707 |
+
"learning_rate": 6.886174310587501e-05,
|
708 |
+
"loss": 0.4429,
|
709 |
+
"step": 5000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.3806437024195372,
|
713 |
+
"grad_norm": 0.17711064219474792,
|
714 |
+
"learning_rate": 6.831217800044252e-05,
|
715 |
+
"loss": 0.4455,
|
716 |
+
"step": 5050
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.3844124519484435,
|
720 |
+
"grad_norm": 0.16528938710689545,
|
721 |
+
"learning_rate": 6.776004587518001e-05,
|
722 |
+
"loss": 0.4452,
|
723 |
+
"step": 5100
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.3881812014773498,
|
727 |
+
"grad_norm": 0.16722093522548676,
|
728 |
+
"learning_rate": 6.720542412853319e-05,
|
729 |
+
"loss": 0.4427,
|
730 |
+
"step": 5150
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.3919499510062561,
|
734 |
+
"grad_norm": 0.16517098248004913,
|
735 |
+
"learning_rate": 6.66483905079454e-05,
|
736 |
+
"loss": 0.4424,
|
737 |
+
"step": 5200
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.39571870053516245,
|
741 |
+
"grad_norm": 0.16755063831806183,
|
742 |
+
"learning_rate": 6.608902309895895e-05,
|
743 |
+
"loss": 0.4405,
|
744 |
+
"step": 5250
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.3994874500640687,
|
748 |
+
"grad_norm": 0.1688978523015976,
|
749 |
+
"learning_rate": 6.552740031426902e-05,
|
750 |
+
"loss": 0.437,
|
751 |
+
"step": 5300
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.40325619959297504,
|
755 |
+
"grad_norm": 0.16191639006137848,
|
756 |
+
"learning_rate": 6.496360088273161e-05,
|
757 |
+
"loss": 0.4405,
|
758 |
+
"step": 5350
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.40702494912188136,
|
762 |
+
"grad_norm": 0.1776248961687088,
|
763 |
+
"learning_rate": 6.439770383832732e-05,
|
764 |
+
"loss": 0.4405,
|
765 |
+
"step": 5400
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.4107936986507877,
|
769 |
+
"grad_norm": 0.16206714510917664,
|
770 |
+
"learning_rate": 6.382978850908226e-05,
|
771 |
+
"loss": 0.44,
|
772 |
+
"step": 5450
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.41456244817969395,
|
776 |
+
"grad_norm": 0.16774949431419373,
|
777 |
+
"learning_rate": 6.325993450594782e-05,
|
778 |
+
"loss": 0.4405,
|
779 |
+
"step": 5500
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.4183311977086003,
|
783 |
+
"grad_norm": 0.16804030537605286,
|
784 |
+
"learning_rate": 6.26882217116406e-05,
|
785 |
+
"loss": 0.4386,
|
786 |
+
"step": 5550
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.4220999472375066,
|
790 |
+
"grad_norm": 0.16452039778232574,
|
791 |
+
"learning_rate": 6.211473026944452e-05,
|
792 |
+
"loss": 0.4369,
|
793 |
+
"step": 5600
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.4258686967664129,
|
797 |
+
"grad_norm": 0.15764504671096802,
|
798 |
+
"learning_rate": 6.153954057197612e-05,
|
799 |
+
"loss": 0.438,
|
800 |
+
"step": 5650
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.4296374462953192,
|
804 |
+
"grad_norm": 0.16407234966754913,
|
805 |
+
"learning_rate": 6.0962733249915135e-05,
|
806 |
+
"loss": 0.4366,
|
807 |
+
"step": 5700
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.4334061958242255,
|
811 |
+
"grad_norm": 0.16679194569587708,
|
812 |
+
"learning_rate": 6.038438916070155e-05,
|
813 |
+
"loss": 0.4381,
|
814 |
+
"step": 5750
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.43717494535313184,
|
818 |
+
"grad_norm": 0.16508112847805023,
|
819 |
+
"learning_rate": 5.9804589377200946e-05,
|
820 |
+
"loss": 0.4369,
|
821 |
+
"step": 5800
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.44094369488203816,
|
825 |
+
"grad_norm": 0.16879412531852722,
|
826 |
+
"learning_rate": 5.922341517633965e-05,
|
827 |
+
"loss": 0.4382,
|
828 |
+
"step": 5850
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.44471244441094443,
|
832 |
+
"grad_norm": 0.16117092967033386,
|
833 |
+
"learning_rate": 5.864094802771115e-05,
|
834 |
+
"loss": 0.4348,
|
835 |
+
"step": 5900
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.44848119393985075,
|
839 |
+
"grad_norm": 0.1632978767156601,
|
840 |
+
"learning_rate": 5.8057269582155735e-05,
|
841 |
+
"loss": 0.4371,
|
842 |
+
"step": 5950
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.4522499434687571,
|
846 |
+
"grad_norm": 0.16430360078811646,
|
847 |
+
"learning_rate": 5.7472461660314504e-05,
|
848 |
+
"loss": 0.435,
|
849 |
+
"step": 6000
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.4560186929976634,
|
853 |
+
"grad_norm": 0.16830819845199585,
|
854 |
+
"learning_rate": 5.6886606241159714e-05,
|
855 |
+
"loss": 0.4337,
|
856 |
+
"step": 6050
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.45978744252656967,
|
860 |
+
"grad_norm": 0.16006672382354736,
|
861 |
+
"learning_rate": 5.6299785450502853e-05,
|
862 |
+
"loss": 0.4336,
|
863 |
+
"step": 6100
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.463556192055476,
|
867 |
+
"grad_norm": 0.16786810755729675,
|
868 |
+
"learning_rate": 5.571208154948218e-05,
|
869 |
+
"loss": 0.4335,
|
870 |
+
"step": 6150
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.4673249415843823,
|
874 |
+
"grad_norm": 0.16502316296100616,
|
875 |
+
"learning_rate": 5.5123576923031253e-05,
|
876 |
+
"loss": 0.433,
|
877 |
+
"step": 6200
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.47109369111328864,
|
881 |
+
"grad_norm": 0.16036230325698853,
|
882 |
+
"learning_rate": 5.453435406833017e-05,
|
883 |
+
"loss": 0.4296,
|
884 |
+
"step": 6250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.4748624406421949,
|
888 |
+
"grad_norm": 0.16277125477790833,
|
889 |
+
"learning_rate": 5.3944495583240987e-05,
|
890 |
+
"loss": 0.4349,
|
891 |
+
"step": 6300
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.47863119017110123,
|
895 |
+
"grad_norm": 0.1639643758535385,
|
896 |
+
"learning_rate": 5.3354084154729034e-05,
|
897 |
+
"loss": 0.4311,
|
898 |
+
"step": 6350
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.48239993970000755,
|
902 |
+
"grad_norm": 0.1611129492521286,
|
903 |
+
"learning_rate": 5.276320254727187e-05,
|
904 |
+
"loss": 0.4315,
|
905 |
+
"step": 6400
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.4861686892289138,
|
909 |
+
"grad_norm": 0.1649327427148819,
|
910 |
+
"learning_rate": 5.217193359125724e-05,
|
911 |
+
"loss": 0.433,
|
912 |
+
"step": 6450
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.48993743875782014,
|
916 |
+
"grad_norm": 0.16595204174518585,
|
917 |
+
"learning_rate": 5.15803601713717e-05,
|
918 |
+
"loss": 0.432,
|
919 |
+
"step": 6500
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.49370618828672647,
|
923 |
+
"grad_norm": 0.16455797851085663,
|
924 |
+
"learning_rate": 5.0988565214981976e-05,
|
925 |
+
"loss": 0.4291,
|
926 |
+
"step": 6550
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.4974749378156328,
|
930 |
+
"grad_norm": 0.16371013224124908,
|
931 |
+
"learning_rate": 5.0396631680509945e-05,
|
932 |
+
"loss": 0.4299,
|
933 |
+
"step": 6600
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.5012436873445391,
|
937 |
+
"grad_norm": 0.16786278784275055,
|
938 |
+
"learning_rate": 4.9804642545803524e-05,
|
939 |
+
"loss": 0.43,
|
940 |
+
"step": 6650
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.5050124368734454,
|
944 |
+
"grad_norm": 0.16633006930351257,
|
945 |
+
"learning_rate": 4.9212680796504704e-05,
|
946 |
+
"loss": 0.4289,
|
947 |
+
"step": 6700
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.5087811864023517,
|
951 |
+
"grad_norm": 0.1592586487531662,
|
952 |
+
"learning_rate": 4.8620829414416615e-05,
|
953 |
+
"loss": 0.4296,
|
954 |
+
"step": 6750
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.512549935931258,
|
958 |
+
"grad_norm": 0.16653411090373993,
|
959 |
+
"learning_rate": 4.8029171365870926e-05,
|
960 |
+
"loss": 0.4282,
|
961 |
+
"step": 6800
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.5163186854601644,
|
965 |
+
"grad_norm": 0.16303293406963348,
|
966 |
+
"learning_rate": 4.743778959009766e-05,
|
967 |
+
"loss": 0.4267,
|
968 |
+
"step": 6850
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.5200874349890706,
|
972 |
+
"grad_norm": 0.1592382937669754,
|
973 |
+
"learning_rate": 4.684676698759864e-05,
|
974 |
+
"loss": 0.4268,
|
975 |
+
"step": 6900
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.5238561845179769,
|
979 |
+
"grad_norm": 0.15816909074783325,
|
980 |
+
"learning_rate": 4.62561864085264e-05,
|
981 |
+
"loss": 0.4261,
|
982 |
+
"step": 6950
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.5276249340468833,
|
986 |
+
"grad_norm": 0.1695041060447693,
|
987 |
+
"learning_rate": 4.566613064107015e-05,
|
988 |
+
"loss": 0.427,
|
989 |
+
"step": 7000
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.5313936835757895,
|
993 |
+
"grad_norm": 0.16515901684761047,
|
994 |
+
"learning_rate": 4.507668239985055e-05,
|
995 |
+
"loss": 0.4263,
|
996 |
+
"step": 7050
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.5351624331046959,
|
1000 |
+
"grad_norm": 0.15738603472709656,
|
1001 |
+
"learning_rate": 4.448792431432451e-05,
|
1002 |
+
"loss": 0.4277,
|
1003 |
+
"step": 7100
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.5389311826336022,
|
1007 |
+
"grad_norm": 0.17032016813755035,
|
1008 |
+
"learning_rate": 4.389993891720232e-05,
|
1009 |
+
"loss": 0.4262,
|
1010 |
+
"step": 7150
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.5426999321625084,
|
1014 |
+
"grad_norm": 0.1652156412601471,
|
1015 |
+
"learning_rate": 4.3312808632877924e-05,
|
1016 |
+
"loss": 0.4228,
|
1017 |
+
"step": 7200
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.5464686816914148,
|
1021 |
+
"grad_norm": 0.161549910902977,
|
1022 |
+
"learning_rate": 4.27266157658747e-05,
|
1023 |
+
"loss": 0.4231,
|
1024 |
+
"step": 7250
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.5502374312203211,
|
1028 |
+
"grad_norm": 0.15818439424037933,
|
1029 |
+
"learning_rate": 4.214144248930797e-05,
|
1030 |
+
"loss": 0.4238,
|
1031 |
+
"step": 7300
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.5540061807492274,
|
1035 |
+
"grad_norm": 0.15689703822135925,
|
1036 |
+
"learning_rate": 4.155737083336575e-05,
|
1037 |
+
"loss": 0.4242,
|
1038 |
+
"step": 7350
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.5577749302781337,
|
1042 |
+
"grad_norm": 0.16835862398147583,
|
1043 |
+
"learning_rate": 4.097448267380979e-05,
|
1044 |
+
"loss": 0.4246,
|
1045 |
+
"step": 7400
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.56154367980704,
|
1049 |
+
"grad_norm": 0.162080317735672,
|
1050 |
+
"learning_rate": 4.03928597204981e-05,
|
1051 |
+
"loss": 0.4204,
|
1052 |
+
"step": 7450
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.5653124293359464,
|
1056 |
+
"grad_norm": 0.16594427824020386,
|
1057 |
+
"learning_rate": 3.9812583505930786e-05,
|
1058 |
+
"loss": 0.4236,
|
1059 |
+
"step": 7500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.5690811788648527,
|
1063 |
+
"grad_norm": 0.1567797213792801,
|
1064 |
+
"learning_rate": 3.923373537382074e-05,
|
1065 |
+
"loss": 0.422,
|
1066 |
+
"step": 7550
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.5728499283937589,
|
1070 |
+
"grad_norm": 0.1608632504940033,
|
1071 |
+
"learning_rate": 3.86563964676908e-05,
|
1072 |
+
"loss": 0.4213,
|
1073 |
+
"step": 7600
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.5766186779226653,
|
1077 |
+
"grad_norm": 0.16220742464065552,
|
1078 |
+
"learning_rate": 3.808064771949893e-05,
|
1079 |
+
"loss": 0.4208,
|
1080 |
+
"step": 7650
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.5803874274515716,
|
1084 |
+
"grad_norm": 0.16180914640426636,
|
1085 |
+
"learning_rate": 3.75065698382932e-05,
|
1086 |
+
"loss": 0.4213,
|
1087 |
+
"step": 7700
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.5841561769804778,
|
1091 |
+
"grad_norm": 0.17086252570152283,
|
1092 |
+
"learning_rate": 3.693424329889776e-05,
|
1093 |
+
"loss": 0.4209,
|
1094 |
+
"step": 7750
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.5879249265093842,
|
1098 |
+
"grad_norm": 0.1601138710975647,
|
1099 |
+
"learning_rate": 3.636374833063191e-05,
|
1100 |
+
"loss": 0.4206,
|
1101 |
+
"step": 7800
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.5916936760382905,
|
1105 |
+
"grad_norm": 0.15639857947826385,
|
1106 |
+
"learning_rate": 3.579516490606346e-05,
|
1107 |
+
"loss": 0.4191,
|
1108 |
+
"step": 7850
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.5954624255671968,
|
1112 |
+
"grad_norm": 0.16204357147216797,
|
1113 |
+
"learning_rate": 3.522857272979804e-05,
|
1114 |
+
"loss": 0.4185,
|
1115 |
+
"step": 7900
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.5992311750961031,
|
1119 |
+
"grad_norm": 0.1710115373134613,
|
1120 |
+
"learning_rate": 3.4664051227306026e-05,
|
1121 |
+
"loss": 0.4178,
|
1122 |
+
"step": 7950
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.6029999246250094,
|
1126 |
+
"grad_norm": 0.15990346670150757,
|
1127 |
+
"learning_rate": 3.4101679533788734e-05,
|
1128 |
+
"loss": 0.4161,
|
1129 |
+
"step": 8000
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.6067686741539158,
|
1133 |
+
"grad_norm": 0.15846975147724152,
|
1134 |
+
"learning_rate": 3.354153648308492e-05,
|
1135 |
+
"loss": 0.4168,
|
1136 |
+
"step": 8050
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.610537423682822,
|
1140 |
+
"grad_norm": 0.15800924599170685,
|
1141 |
+
"learning_rate": 3.298370059662004e-05,
|
1142 |
+
"loss": 0.4165,
|
1143 |
+
"step": 8100
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.6143061732117283,
|
1147 |
+
"grad_norm": 0.1673530787229538,
|
1148 |
+
"learning_rate": 3.2428250072398846e-05,
|
1149 |
+
"loss": 0.4164,
|
1150 |
+
"step": 8150
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.6180749227406347,
|
1154 |
+
"grad_norm": 0.16620007157325745,
|
1155 |
+
"learning_rate": 3.187526277404355e-05,
|
1156 |
+
"loss": 0.4193,
|
1157 |
+
"step": 8200
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.621843672269541,
|
1161 |
+
"grad_norm": 0.1582447588443756,
|
1162 |
+
"learning_rate": 3.1324816219878903e-05,
|
1163 |
+
"loss": 0.416,
|
1164 |
+
"step": 8250
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.6256124217984472,
|
1168 |
+
"grad_norm": 0.16663286089897156,
|
1169 |
+
"learning_rate": 3.077698757206552e-05,
|
1170 |
+
"loss": 0.4172,
|
1171 |
+
"step": 8300
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.6293811713273536,
|
1175 |
+
"grad_norm": 0.16307072341442108,
|
1176 |
+
"learning_rate": 3.0231853625783163e-05,
|
1177 |
+
"loss": 0.4145,
|
1178 |
+
"step": 8350
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.6331499208562599,
|
1182 |
+
"grad_norm": 0.1569572240114212,
|
1183 |
+
"learning_rate": 2.9689490798465698e-05,
|
1184 |
+
"loss": 0.4146,
|
1185 |
+
"step": 8400
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.6369186703851663,
|
1189 |
+
"grad_norm": 0.1609562188386917,
|
1190 |
+
"learning_rate": 2.9149975119088596e-05,
|
1191 |
+
"loss": 0.4146,
|
1192 |
+
"step": 8450
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.6406874199140725,
|
1196 |
+
"grad_norm": 0.15904489159584045,
|
1197 |
+
"learning_rate": 2.8613382217511265e-05,
|
1198 |
+
"loss": 0.4125,
|
1199 |
+
"step": 8500
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.6444561694429788,
|
1203 |
+
"grad_norm": 0.16079629957675934,
|
1204 |
+
"learning_rate": 2.807978731387516e-05,
|
1205 |
+
"loss": 0.4151,
|
1206 |
+
"step": 8550
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.6482249189718852,
|
1210 |
+
"grad_norm": 0.16790254414081573,
|
1211 |
+
"learning_rate": 2.754926520805925e-05,
|
1212 |
+
"loss": 0.4141,
|
1213 |
+
"step": 8600
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.6519936685007914,
|
1217 |
+
"grad_norm": 0.16292473673820496,
|
1218 |
+
"learning_rate": 2.702189026919465e-05,
|
1219 |
+
"loss": 0.4143,
|
1220 |
+
"step": 8650
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.6557624180296977,
|
1224 |
+
"grad_norm": 0.16475141048431396,
|
1225 |
+
"learning_rate": 2.6497736425239315e-05,
|
1226 |
+
"loss": 0.4129,
|
1227 |
+
"step": 8700
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.6595311675586041,
|
1231 |
+
"grad_norm": 0.1627720594406128,
|
1232 |
+
"learning_rate": 2.597687715261484e-05,
|
1233 |
+
"loss": 0.4127,
|
1234 |
+
"step": 8750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.6632999170875103,
|
1238 |
+
"grad_norm": 0.1639036387205124,
|
1239 |
+
"learning_rate": 2.5459385465906517e-05,
|
1240 |
+
"loss": 0.4121,
|
1241 |
+
"step": 8800
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.6670686666164167,
|
1245 |
+
"grad_norm": 0.16833463311195374,
|
1246 |
+
"learning_rate": 2.4945333907627892e-05,
|
1247 |
+
"loss": 0.4129,
|
1248 |
+
"step": 8850
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.670837416145323,
|
1252 |
+
"grad_norm": 0.15790612995624542,
|
1253 |
+
"learning_rate": 2.443479453805189e-05,
|
1254 |
+
"loss": 0.4098,
|
1255 |
+
"step": 8900
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.6746061656742293,
|
1259 |
+
"grad_norm": 0.16387607157230377,
|
1260 |
+
"learning_rate": 2.392783892510917e-05,
|
1261 |
+
"loss": 0.411,
|
1262 |
+
"step": 8950
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.6783749152031356,
|
1266 |
+
"grad_norm": 0.16562491655349731,
|
1267 |
+
"learning_rate": 2.3424538134355715e-05,
|
1268 |
+
"loss": 0.4122,
|
1269 |
+
"step": 9000
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.6821436647320419,
|
1273 |
+
"grad_norm": 0.15516149997711182,
|
1274 |
+
"learning_rate": 2.2924962719010874e-05,
|
1275 |
+
"loss": 0.4112,
|
1276 |
+
"step": 9050
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.6859124142609482,
|
1280 |
+
"grad_norm": 0.16322891414165497,
|
1281 |
+
"learning_rate": 2.242918271006698e-05,
|
1282 |
+
"loss": 0.4109,
|
1283 |
+
"step": 9100
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.6896811637898546,
|
1287 |
+
"grad_norm": 0.16053235530853271,
|
1288 |
+
"learning_rate": 2.193726760647245e-05,
|
1289 |
+
"loss": 0.4088,
|
1290 |
+
"step": 9150
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.6934499133187608,
|
1294 |
+
"grad_norm": 0.1649434119462967,
|
1295 |
+
"learning_rate": 2.1449286365389342e-05,
|
1296 |
+
"loss": 0.4103,
|
1297 |
+
"step": 9200
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.6972186628476671,
|
1301 |
+
"grad_norm": 0.1640276312828064,
|
1302 |
+
"learning_rate": 2.0965307392526818e-05,
|
1303 |
+
"loss": 0.409,
|
1304 |
+
"step": 9250
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.7009874123765735,
|
1308 |
+
"grad_norm": 0.1616964489221573,
|
1309 |
+
"learning_rate": 2.048539853255197e-05,
|
1310 |
+
"loss": 0.4105,
|
1311 |
+
"step": 9300
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.7047561619054797,
|
1315 |
+
"grad_norm": 0.1595754474401474,
|
1316 |
+
"learning_rate": 2.0009627059579372e-05,
|
1317 |
+
"loss": 0.4108,
|
1318 |
+
"step": 9350
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.7085249114343861,
|
1322 |
+
"grad_norm": 0.1613272726535797,
|
1323 |
+
"learning_rate": 1.953805966774037e-05,
|
1324 |
+
"loss": 0.4114,
|
1325 |
+
"step": 9400
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.7122936609632924,
|
1329 |
+
"grad_norm": 0.15698370337486267,
|
1330 |
+
"learning_rate": 1.9070762461834018e-05,
|
1331 |
+
"loss": 0.4087,
|
1332 |
+
"step": 9450
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.7160624104921987,
|
1336 |
+
"grad_norm": 0.17342697083950043,
|
1337 |
+
"learning_rate": 1.8607800948060266e-05,
|
1338 |
+
"loss": 0.4072,
|
1339 |
+
"step": 9500
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.719831160021105,
|
1343 |
+
"grad_norm": 0.16098545491695404,
|
1344 |
+
"learning_rate": 1.8149240024837315e-05,
|
1345 |
+
"loss": 0.4071,
|
1346 |
+
"step": 9550
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.7235999095500113,
|
1350 |
+
"grad_norm": 0.16427302360534668,
|
1351 |
+
"learning_rate": 1.7695143973704143e-05,
|
1352 |
+
"loss": 0.4067,
|
1353 |
+
"step": 9600
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.7273686590789176,
|
1357 |
+
"grad_norm": 0.1618986576795578,
|
1358 |
+
"learning_rate": 1.7245576450309316e-05,
|
1359 |
+
"loss": 0.4081,
|
1360 |
+
"step": 9650
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.731137408607824,
|
1364 |
+
"grad_norm": 0.15955495834350586,
|
1365 |
+
"learning_rate": 1.6800600475487826e-05,
|
1366 |
+
"loss": 0.4085,
|
1367 |
+
"step": 9700
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.7349061581367302,
|
1371 |
+
"grad_norm": 0.159365713596344,
|
1372 |
+
"learning_rate": 1.6360278426426624e-05,
|
1373 |
+
"loss": 0.4069,
|
1374 |
+
"step": 9750
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.7386749076656366,
|
1378 |
+
"grad_norm": 0.1574493795633316,
|
1379 |
+
"learning_rate": 1.5924672027920663e-05,
|
1380 |
+
"loss": 0.4058,
|
1381 |
+
"step": 9800
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.7424436571945429,
|
1385 |
+
"grad_norm": 0.16413567960262299,
|
1386 |
+
"learning_rate": 1.5493842343720104e-05,
|
1387 |
+
"loss": 0.4047,
|
1388 |
+
"step": 9850
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.7462124067234491,
|
1392 |
+
"grad_norm": 0.1662568747997284,
|
1393 |
+
"learning_rate": 1.5067849767970488e-05,
|
1394 |
+
"loss": 0.4046,
|
1395 |
+
"step": 9900
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.7499811562523555,
|
1399 |
+
"grad_norm": 0.16023589670658112,
|
1400 |
+
"learning_rate": 1.4646754016746483e-05,
|
1401 |
+
"loss": 0.4072,
|
1402 |
+
"step": 9950
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.7537499057812618,
|
1406 |
+
"grad_norm": 0.16238714754581451,
|
1407 |
+
"learning_rate": 1.4230614119680957e-05,
|
1408 |
+
"loss": 0.4072,
|
1409 |
+
"step": 10000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.757518655310168,
|
1413 |
+
"grad_norm": 0.16267696022987366,
|
1414 |
+
"learning_rate": 1.3819488411690018e-05,
|
1415 |
+
"loss": 0.4056,
|
1416 |
+
"step": 10050
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.7612874048390744,
|
1420 |
+
"grad_norm": 0.1596570760011673,
|
1421 |
+
"learning_rate": 1.3413434524795631e-05,
|
1422 |
+
"loss": 0.4049,
|
1423 |
+
"step": 10100
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.7650561543679807,
|
1427 |
+
"grad_norm": 0.17054887115955353,
|
1428 |
+
"learning_rate": 1.3012509380046745e-05,
|
1429 |
+
"loss": 0.4032,
|
1430 |
+
"step": 10150
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.768824903896887,
|
1434 |
+
"grad_norm": 0.15980112552642822,
|
1435 |
+
"learning_rate": 1.2616769179539944e-05,
|
1436 |
+
"loss": 0.405,
|
1437 |
+
"step": 10200
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.7725936534257933,
|
1441 |
+
"grad_norm": 0.16071230173110962,
|
1442 |
+
"learning_rate": 1.222626939854103e-05,
|
1443 |
+
"loss": 0.4027,
|
1444 |
+
"step": 10250
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.7763624029546996,
|
1448 |
+
"grad_norm": 0.15903015434741974,
|
1449 |
+
"learning_rate": 1.1841064777708483e-05,
|
1450 |
+
"loss": 0.4043,
|
1451 |
+
"step": 10300
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.780131152483606,
|
1455 |
+
"grad_norm": 0.16393496096134186,
|
1456 |
+
"learning_rate": 1.1461209315419758e-05,
|
1457 |
+
"loss": 0.4009,
|
1458 |
+
"step": 10350
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.7838999020125123,
|
1462 |
+
"grad_norm": 0.16215142607688904,
|
1463 |
+
"learning_rate": 1.1086756260201859e-05,
|
1464 |
+
"loss": 0.4032,
|
1465 |
+
"step": 10400
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.7876686515414185,
|
1469 |
+
"grad_norm": 0.16436554491519928,
|
1470 |
+
"learning_rate": 1.0717758103266805e-05,
|
1471 |
+
"loss": 0.4035,
|
1472 |
+
"step": 10450
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.7914374010703249,
|
1476 |
+
"grad_norm": 0.16526173055171967,
|
1477 |
+
"learning_rate": 1.0354266571153399e-05,
|
1478 |
+
"loss": 0.4023,
|
1479 |
+
"step": 10500
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.7952061505992312,
|
1483 |
+
"grad_norm": 0.1610834300518036,
|
1484 |
+
"learning_rate": 9.996332618476172e-06,
|
1485 |
+
"loss": 0.4031,
|
1486 |
+
"step": 10550
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.7989749001281374,
|
1490 |
+
"grad_norm": 0.1577410101890564,
|
1491 |
+
"learning_rate": 9.644006420782476e-06,
|
1492 |
+
"loss": 0.4006,
|
1493 |
+
"step": 10600
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.8027436496570438,
|
1497 |
+
"grad_norm": 0.15618577599525452,
|
1498 |
+
"learning_rate": 9.29733736751881e-06,
|
1499 |
+
"loss": 0.4037,
|
1500 |
+
"step": 10650
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.8065123991859501,
|
1504 |
+
"grad_norm": 0.15943607687950134,
|
1505 |
+
"learning_rate": 8.956374055107442e-06,
|
1506 |
+
"loss": 0.4026,
|
1507 |
+
"step": 10700
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.8102811487148565,
|
1511 |
+
"grad_norm": 0.1561410278081894,
|
1512 |
+
"learning_rate": 8.621164280134004e-06,
|
1513 |
+
"loss": 0.4021,
|
1514 |
+
"step": 10750
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.8140498982437627,
|
1518 |
+
"grad_norm": 0.166486918926239,
|
1519 |
+
"learning_rate": 8.291755032647402e-06,
|
1520 |
+
"loss": 0.4017,
|
1521 |
+
"step": 10800
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.817818647772669,
|
1525 |
+
"grad_norm": 0.16270950436592102,
|
1526 |
+
"learning_rate": 7.96819248957265e-06,
|
1527 |
+
"loss": 0.4019,
|
1528 |
+
"step": 10850
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.8215873973015754,
|
1532 |
+
"grad_norm": 0.1590346395969391,
|
1533 |
+
"learning_rate": 7.650522008237754e-06,
|
1534 |
+
"loss": 0.4014,
|
1535 |
+
"step": 10900
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.8253561468304816,
|
1539 |
+
"grad_norm": 0.15762105584144592,
|
1540 |
+
"learning_rate": 7.338788120015522e-06,
|
1541 |
+
"loss": 0.4005,
|
1542 |
+
"step": 10950
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.8291248963593879,
|
1546 |
+
"grad_norm": 0.1578063815832138,
|
1547 |
+
"learning_rate": 7.033034524081023e-06,
|
1548 |
+
"loss": 0.4008,
|
1549 |
+
"step": 11000
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.8328936458882943,
|
1553 |
+
"grad_norm": 0.1597341001033783,
|
1554 |
+
"learning_rate": 6.733304081285874e-06,
|
1555 |
+
"loss": 0.4005,
|
1556 |
+
"step": 11050
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.8366623954172006,
|
1560 |
+
"grad_norm": 0.16171535849571228,
|
1561 |
+
"learning_rate": 6.439638808149923e-06,
|
1562 |
+
"loss": 0.4018,
|
1563 |
+
"step": 11100
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.8404311449461069,
|
1567 |
+
"grad_norm": 0.16193453967571259,
|
1568 |
+
"learning_rate": 6.152079870971311e-06,
|
1569 |
+
"loss": 0.3993,
|
1570 |
+
"step": 11150
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.8441998944750132,
|
1574 |
+
"grad_norm": 0.15683096647262573,
|
1575 |
+
"learning_rate": 5.870667580055805e-06,
|
1576 |
+
"loss": 0.4014,
|
1577 |
+
"step": 11200
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.8479686440039195,
|
1581 |
+
"grad_norm": 0.16238045692443848,
|
1582 |
+
"learning_rate": 5.595441384065986e-06,
|
1583 |
+
"loss": 0.402,
|
1584 |
+
"step": 11250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.8517373935328258,
|
1588 |
+
"grad_norm": 0.15774257481098175,
|
1589 |
+
"learning_rate": 5.3264398644913114e-06,
|
1590 |
+
"loss": 0.4,
|
1591 |
+
"step": 11300
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.8555061430617321,
|
1595 |
+
"grad_norm": 0.15233269333839417,
|
1596 |
+
"learning_rate": 5.063700730239784e-06,
|
1597 |
+
"loss": 0.3994,
|
1598 |
+
"step": 11350
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.8592748925906384,
|
1602 |
+
"grad_norm": 0.16699600219726562,
|
1603 |
+
"learning_rate": 4.807260812351793e-06,
|
1604 |
+
"loss": 0.399,
|
1605 |
+
"step": 11400
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.8630436421195448,
|
1609 |
+
"grad_norm": 0.1617075353860855,
|
1610 |
+
"learning_rate": 4.557156058837137e-06,
|
1611 |
+
"loss": 0.3988,
|
1612 |
+
"step": 11450
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.866812391648451,
|
1616 |
+
"grad_norm": 0.1602969914674759,
|
1617 |
+
"learning_rate": 4.31342152963583e-06,
|
1618 |
+
"loss": 0.3999,
|
1619 |
+
"step": 11500
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.8705811411773573,
|
1623 |
+
"grad_norm": 0.15863758325576782,
|
1624 |
+
"learning_rate": 4.076091391703302e-06,
|
1625 |
+
"loss": 0.3999,
|
1626 |
+
"step": 11550
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.8743498907062637,
|
1630 |
+
"grad_norm": 0.1571153998374939,
|
1631 |
+
"learning_rate": 3.845198914220871e-06,
|
1632 |
+
"loss": 0.3984,
|
1633 |
+
"step": 11600
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.87811864023517,
|
1637 |
+
"grad_norm": 0.15634584426879883,
|
1638 |
+
"learning_rate": 3.6207764639320462e-06,
|
1639 |
+
"loss": 0.3989,
|
1640 |
+
"step": 11650
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.8818873897640763,
|
1644 |
+
"grad_norm": 0.16058678925037384,
|
1645 |
+
"learning_rate": 3.4028555006052953e-06,
|
1646 |
+
"loss": 0.4015,
|
1647 |
+
"step": 11700
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.8856561392929826,
|
1651 |
+
"grad_norm": 0.15872234106063843,
|
1652 |
+
"learning_rate": 3.191466572624019e-06,
|
1653 |
+
"loss": 0.3979,
|
1654 |
+
"step": 11750
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.8894248888218889,
|
1658 |
+
"grad_norm": 0.16169828176498413,
|
1659 |
+
"learning_rate": 2.986639312704209e-06,
|
1660 |
+
"loss": 0.3984,
|
1661 |
+
"step": 11800
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.8931936383507952,
|
1665 |
+
"grad_norm": 0.16279493272304535,
|
1666 |
+
"learning_rate": 2.788402433740517e-06,
|
1667 |
+
"loss": 0.3982,
|
1668 |
+
"step": 11850
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.8969623878797015,
|
1672 |
+
"grad_norm": 0.1638520359992981,
|
1673 |
+
"learning_rate": 2.596783724781282e-06,
|
1674 |
+
"loss": 0.4002,
|
1675 |
+
"step": 11900
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.9007311374086078,
|
1679 |
+
"grad_norm": 0.15517061948776245,
|
1680 |
+
"learning_rate": 2.4118100471329787e-06,
|
1681 |
+
"loss": 0.3974,
|
1682 |
+
"step": 11950
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.9044998869375142,
|
1686 |
+
"grad_norm": 0.1604815125465393,
|
1687 |
+
"learning_rate": 2.2335073305948086e-06,
|
1688 |
+
"loss": 0.3992,
|
1689 |
+
"step": 12000
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.9082686364664204,
|
1693 |
+
"grad_norm": 0.157390296459198,
|
1694 |
+
"learning_rate": 2.0619005698238437e-06,
|
1695 |
+
"loss": 0.3989,
|
1696 |
+
"step": 12050
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.9120373859953268,
|
1700 |
+
"grad_norm": 0.15608523786067963,
|
1701 |
+
"learning_rate": 1.8970138208311949e-06,
|
1702 |
+
"loss": 0.3971,
|
1703 |
+
"step": 12100
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.9158061355242331,
|
1707 |
+
"grad_norm": 0.15673068165779114,
|
1708 |
+
"learning_rate": 1.7388701976099041e-06,
|
1709 |
+
"loss": 0.3994,
|
1710 |
+
"step": 12150
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.9195748850531393,
|
1714 |
+
"grad_norm": 0.1587488353252411,
|
1715 |
+
"learning_rate": 1.5874918688946972e-06,
|
1716 |
+
"loss": 0.3985,
|
1717 |
+
"step": 12200
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.9233436345820457,
|
1721 |
+
"grad_norm": 0.16035687923431396,
|
1722 |
+
"learning_rate": 1.4429000550544414e-06,
|
1723 |
+
"loss": 0.399,
|
1724 |
+
"step": 12250
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.927112384110952,
|
1728 |
+
"grad_norm": 0.15816493332386017,
|
1729 |
+
"learning_rate": 1.305115025117387e-06,
|
1730 |
+
"loss": 0.4,
|
1731 |
+
"step": 12300
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.9308811336398582,
|
1735 |
+
"grad_norm": 0.16530562937259674,
|
1736 |
+
"learning_rate": 1.1741560939298791e-06,
|
1737 |
+
"loss": 0.3995,
|
1738 |
+
"step": 12350
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.9346498831687646,
|
1742 |
+
"grad_norm": 0.1594778597354889,
|
1743 |
+
"learning_rate": 1.0500416194487384e-06,
|
1744 |
+
"loss": 0.3997,
|
1745 |
+
"step": 12400
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.9384186326976709,
|
1749 |
+
"grad_norm": 0.15754447877407074,
|
1750 |
+
"learning_rate": 9.327890001678719e-07,
|
1751 |
+
"loss": 0.3972,
|
1752 |
+
"step": 12450
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.9421873822265773,
|
1756 |
+
"grad_norm": 0.15905898809432983,
|
1757 |
+
"learning_rate": 8.224146726792947e-07,
|
1758 |
+
"loss": 0.3972,
|
1759 |
+
"step": 12500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.9459561317554835,
|
1763 |
+
"grad_norm": 0.15947633981704712,
|
1764 |
+
"learning_rate": 7.189341093690627e-07,
|
1765 |
+
"loss": 0.3964,
|
1766 |
+
"step": 12550
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.9497248812843898,
|
1770 |
+
"grad_norm": 0.16022710502147675,
|
1771 |
+
"learning_rate": 6.223618162483014e-07,
|
1772 |
+
"loss": 0.3993,
|
1773 |
+
"step": 12600
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.9534936308132962,
|
1777 |
+
"grad_norm": 0.16380661725997925,
|
1778 |
+
"learning_rate": 5.327113309197828e-07,
|
1779 |
+
"loss": 0.4,
|
1780 |
+
"step": 12650
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.9572623803422025,
|
1784 |
+
"grad_norm": 0.15692880749702454,
|
1785 |
+
"learning_rate": 4.4999522068017164e-07,
|
1786 |
+
"loss": 0.3982,
|
1787 |
+
"step": 12700
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.9610311298711087,
|
1791 |
+
"grad_norm": 0.16599752008914948,
|
1792 |
+
"learning_rate": 3.7422508075835583e-07,
|
1793 |
+
"loss": 0.397,
|
1794 |
+
"step": 12750
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.9647998794000151,
|
1798 |
+
"grad_norm": 0.15927733480930328,
|
1799 |
+
"learning_rate": 3.05411532689992e-07,
|
1800 |
+
"loss": 0.396,
|
1801 |
+
"step": 12800
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.9685686289289214,
|
1805 |
+
"grad_norm": 0.15940117835998535,
|
1806 |
+
"learning_rate": 2.435642228285906e-07,
|
1807 |
+
"loss": 0.3983,
|
1808 |
+
"step": 12850
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.9723373784578276,
|
1812 |
+
"grad_norm": 0.16387763619422913,
|
1813 |
+
"learning_rate": 1.886918209932642e-07,
|
1814 |
+
"loss": 0.398,
|
1815 |
+
"step": 12900
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.976106127986734,
|
1819 |
+
"grad_norm": 0.15747365355491638,
|
1820 |
+
"learning_rate": 1.4080201925338322e-07,
|
1821 |
+
"loss": 0.3978,
|
1822 |
+
"step": 12950
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.9798748775156403,
|
1826 |
+
"grad_norm": 0.1579546183347702,
|
1827 |
+
"learning_rate": 9.99015308503215e-08,
|
1828 |
+
"loss": 0.4005,
|
1829 |
+
"step": 13000
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.9836436270445467,
|
1833 |
+
"grad_norm": 0.15818338096141815,
|
1834 |
+
"learning_rate": 6.599608925633715e-08,
|
1835 |
+
"loss": 0.3978,
|
1836 |
+
"step": 13050
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.9874123765734529,
|
1840 |
+
"grad_norm": 0.15863798558712006,
|
1841 |
+
"learning_rate": 3.909044737089307e-08,
|
1842 |
+
"loss": 0.3991,
|
1843 |
+
"step": 13100
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.9911811261023592,
|
1847 |
+
"grad_norm": 0.1556527018547058,
|
1848 |
+
"learning_rate": 1.9188376854373246e-08,
|
1849 |
+
"loss": 0.3985,
|
1850 |
+
"step": 13150
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.9949498756312656,
|
1854 |
+
"grad_norm": 0.16225971281528473,
|
1855 |
+
"learning_rate": 6.292667599366864e-09,
|
1856 |
+
"loss": 0.3979,
|
1857 |
+
"step": 13200
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.9987186251601718,
|
1861 |
+
"grad_norm": 0.16236484050750732,
|
1862 |
+
"learning_rate": 4.0512733956998837e-10,
|
1863 |
+
"loss": 0.3953,
|
1864 |
+
"step": 13250
|
1865 |
+
}
|
1866 |
+
],
|
1867 |
+
"logging_steps": 50,
|
1868 |
+
"max_steps": 13267,
|
1869 |
+
"num_input_tokens_seen": 0,
|
1870 |
+
"num_train_epochs": 1,
|
1871 |
+
"save_steps": 500,
|
1872 |
+
"stateful_callbacks": {
|
1873 |
+
"TrainerControl": {
|
1874 |
+
"args": {
|
1875 |
+
"should_epoch_stop": false,
|
1876 |
+
"should_evaluate": false,
|
1877 |
+
"should_log": false,
|
1878 |
+
"should_save": true,
|
1879 |
+
"should_training_stop": true
|
1880 |
+
},
|
1881 |
+
"attributes": {}
|
1882 |
+
}
|
1883 |
+
},
|
1884 |
+
"total_flos": 6.892725356142474e+19,
|
1885 |
+
"train_batch_size": 2,
|
1886 |
+
"trial_name": null,
|
1887 |
+
"trial_params": null
|
1888 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0085c343f2206a794f40a3e085ec366c9dc3ce02d1c86bbca36834ab3eb500ea
|
3 |
+
size 6968
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|