motexture commited on
Commit
a83c3af
·
verified ·
1 Parent(s): 0c0487d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - motexture/cData
5
+ language:
6
+ - en
7
+ - it
8
+ - es
9
+ base_model:
10
+ - meta-llama/Llama-3.2-3B-Instruct
11
+ pipeline_tag: text-generation
12
+ tags:
13
+ - smoll
14
+ - coding
15
+ - coder
16
+ - model
17
+ - small
18
+ ---
19
+
20
+ # LlamaXCoder-3.2-3B-Instruct
21
+
22
+ ## Introduction
23
+
24
+ LlamaXCoder-3.2-3B-Instruct is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct, trained on the cData coding dataset to improve its reasoning and coding ability.
25
+
26
+ ## Quickstart
27
+
28
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
29
+
30
+ ```python
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+ device = "cuda" # the device to load the model onto
33
+
34
+ model = AutoModelForCausalLM.from_pretrained(
35
+ "motexture/LlamaXCoder-3.2-3B-Instruct",
36
+ torch_dtype="auto",
37
+ device_map="auto"
38
+ )
39
+ tokenizer = AutoTokenizer.from_pretrained("motexture/LlamaXCoder-3.2-3B-Instruct")
40
+
41
+ prompt = "Write a C++ program that prints Hello World!"
42
+ messages = [
43
+ {"role": "system", "content": "You are a helpful assistant."},
44
+ {"role": "user", "content": prompt}
45
+ ]
46
+ text = tokenizer.apply_chat_template(
47
+ messages,
48
+ tokenize=False,
49
+ add_generation_prompt=True
50
+ )
51
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
52
+
53
+ generated_ids = model.generate(
54
+ model_inputs.input_ids,
55
+ max_new_tokens=4096,
56
+ do_sample=True,
57
+ temperature=0.3
58
+ )
59
+ generated_ids = [
60
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
61
+ ]
62
+
63
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
64
+ ```
65
+
66
+ ## License
67
+
68
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)