moshew commited on
Commit
dba50f6
·
verified ·
1 Parent(s): db36677

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:6000
8
+ - loss:CoSENTLoss
9
+ base_model: avsolatorio/GIST-small-Embedding-v0
10
+ widget:
11
+ - source_sentence: are paris metro tickets one way?
12
+ sentences:
13
+ - The two big differences between the 2.4 GHz and 5 GHz frequencies are speed and
14
+ range. A wireless transmission at 2.4 GHz provides internet to a larger area but
15
+ sacrifices speed, while 5 GHz provides faster speeds to a smaller area.
16
+ - The State of Rhode Island has adopted the income shares model to determine the
17
+ weekly child support order. It is based upon the philosophy that children are
18
+ entitled to the standard of living based upon both parents monthly income. ...
19
+ Weekly gross income of both parents before taxes and before any other deductions.
20
+ - Insulin NPH may be administered in 2 divided doses daily (either as equally divided
21
+ doses, or as ~2/3 of the dose before the morning meal and ~1/3 of the dose before
22
+ the evening meal or at bedtime).
23
+ - source_sentence: how to pxe boot surface pro?
24
+ sentences:
25
+ - The UKTV Play app, with shows from Dave, Drama, Yesterday and Really, is available
26
+ on smart TVs powered by Freeview Play and newer Samsung TVs. ... You can watch
27
+ catch up and box sets from W, Alibi, Gold, Eden, Dave, Drama and Yesterday on
28
+ Sky+HD, Sky Q and Sky Go.
29
+ - In a branch For cash that was deposited over the counter at another bank, the
30
+ processing and clearance time is 5 business days (not including public holidays).
31
+ - '[''Click "account" in the upper right corner of your Facebook page.'', ''Select
32
+ "privacy settings."'', ''Under "block lists" at the bottom center of the page,
33
+ click "edit your lists."'', ''At the top, under "block users," add the name or
34
+ e-mail address of the person you\''d like to block.'', ''Click "block."'']'
35
+ - source_sentence: what is long-term capital gains rate?
36
+ sentences:
37
+ - You can get Social Security retirement or survivors benefits and work at the same
38
+ time. But, if you're younger than full retirement age, and earn more than certain
39
+ amounts, your benefits will be reduced. The amount that your benefits are reduced,
40
+ however, isn't truly lost.
41
+ - Dreams that involve shouting can warn of impending trouble. When you are the one
42
+ shouting, this can mean you are going through a tough time in your waking life.
43
+ You may be only feeling only negative emotions. ... Hearing someone else shouting
44
+ signifies a warning of fright or anger.
45
+ - 'A regular polygon is a flat shape whose sides are all equal and whose angles
46
+ are all equal. The formula for finding the sum of the measure of the interior
47
+ angles is (n - 2) * 180. To find the measure of one interior angle, we take that
48
+ formula and divide by the number of sides n: (n - 2) * 180 / n.'
49
+ - source_sentence: can a girl get pregnant two days after her menstruation?
50
+ sentences:
51
+ - Newborn usually refers to a baby from birth to about 2 months of age. Infants
52
+ can be considered children anywhere from birth to 1 year old. Baby can be used
53
+ to refer to any child from birth to age 4 years old, thus encompassing newborns,
54
+ infants, and toddlers.
55
+ - 'According to professional numerologists, there are three ultimately lucky numbers
56
+ for Capricorn-born people: they are 5, 6, and 8. In case they want to increase
57
+ the chance of success for anything, simply make use of these numbers.'
58
+ - He's a professional dancer and model. J.C. Before entering the Big Brother house,
59
+ J.C. was a dancer who traveled the world to perform professionally. “I do professional
60
+ dancing. Not really break dancing, I do more choreography dancing,” he said in
61
+ an interview with Entertainment Tonight Canada.
62
+ - source_sentence: how long does it take to transfer money between anz and westpac?
63
+ sentences:
64
+ - This service is currently offered free of charge by the bank. You can get the
65
+ last 'Available' balance of your account (by an SMS) by giving a Missed Call to
66
+ 18008431122. You can get the Mini Statement (by an SMS) for last 5 transactions
67
+ in your account by giving a Missed Call to 18008431133. 1.
68
+ - Simply put, 1 ply toilet paper is made of a single layer of paper, while 2 ply
69
+ has two layers. ... In the 1950's, a manufacturer created a method to roll and
70
+ attach one-ply paper together to make a thicker “two-ply”. For years, 2-ply toilet
71
+ tissue was always thicker and usually assumed to be better.
72
+ - The main difference between unique and distinct is that UNIQUE is a constraint
73
+ that is used on the input of data and ensures data integrity. While DISTINCT keyword
74
+ is used when we want to query our results or in other words, output the data.
75
+ pipeline_tag: sentence-similarity
76
+ library_name: sentence-transformers
77
+ ---
78
+
79
+ # SentenceTransformer based on avsolatorio/GIST-small-Embedding-v0
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) <!-- at revision 75e62fd210b9fde790430e0b2f040b0b00a021b1 -->
88
+ - **Maximum Sequence Length:** 512 tokens
89
+ - **Output Dimensionality:** 384 dimensions
90
+ - **Similarity Function:** Cosine Similarity
91
+ <!-- - **Training Dataset:** Unknown -->
92
+ <!-- - **Language:** Unknown -->
93
+ <!-- - **License:** Unknown -->
94
+
95
+ ### Model Sources
96
+
97
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
98
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
99
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
100
+
101
+ ### Full Model Architecture
102
+
103
+ ```
104
+ SentenceTransformer(
105
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
106
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
107
+ (2): Normalize()
108
+ )
109
+ ```
110
+
111
+ ## Usage
112
+
113
+ ### Direct Usage (Sentence Transformers)
114
+
115
+ First install the Sentence Transformers library:
116
+
117
+ ```bash
118
+ pip install -U sentence-transformers
119
+ ```
120
+
121
+ Then you can load this model and run inference.
122
+ ```python
123
+ from sentence_transformers import SentenceTransformer
124
+
125
+ # Download from the 🤗 Hub
126
+ model = SentenceTransformer("moshew/gist_small_ft_gooaq_v1")
127
+ # Run inference
128
+ sentences = [
129
+ 'how long does it take to transfer money between anz and westpac?',
130
+ "This service is currently offered free of charge by the bank. You can get the last 'Available' balance of your account (by an SMS) by giving a Missed Call to 18008431122. You can get the Mini Statement (by an SMS) for last 5 transactions in your account by giving a Missed Call to 18008431133. 1.",
131
+ "Simply put, 1 ply toilet paper is made of a single layer of paper, while 2 ply has two layers. ... In the 1950's, a manufacturer created a method to roll and attach one-ply paper together to make a thicker “two-ply”. For years, 2-ply toilet tissue was always thicker and usually assumed to be better.",
132
+ ]
133
+ embeddings = model.encode(sentences)
134
+ print(embeddings.shape)
135
+ # [3, 384]
136
+
137
+ # Get the similarity scores for the embeddings
138
+ similarities = model.similarity(embeddings, embeddings)
139
+ print(similarities.shape)
140
+ # [3, 3]
141
+ ```
142
+
143
+ <!--
144
+ ### Direct Usage (Transformers)
145
+
146
+ <details><summary>Click to see the direct usage in Transformers</summary>
147
+
148
+ </details>
149
+ -->
150
+
151
+ <!--
152
+ ### Downstream Usage (Sentence Transformers)
153
+
154
+ You can finetune this model on your own dataset.
155
+
156
+ <details><summary>Click to expand</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Out-of-Scope Use
163
+
164
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
165
+ -->
166
+
167
+ <!--
168
+ ## Bias, Risks and Limitations
169
+
170
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
171
+ -->
172
+
173
+ <!--
174
+ ### Recommendations
175
+
176
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
177
+ -->
178
+
179
+ ## Training Details
180
+
181
+ ### Training Dataset
182
+
183
+ #### Unnamed Dataset
184
+
185
+ * Size: 6,000 training samples
186
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
187
+ * Approximate statistics based on the first 1000 samples:
188
+ | | sentence1 | sentence2 | label |
189
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------|
190
+ | type | string | string | float |
191
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.97 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 58.86 tokens</li><li>max: 126 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.17</li><li>max: 1.0</li></ul> |
192
+ * Samples:
193
+ | sentence1 | sentence2 | label |
194
+ |:--------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
195
+ | <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Though there are some minor differences in shape and nutrients, Rapid-Rise Yeast is (pretty much) the same as Instant Yeast and Bread Machine Yeast. ... Also, Rapid-Rise Yeast is a little more potent than Active Dry Yeast and can be mixed in with your dry ingredients directly.</code> | <code>1.0</code> |
196
+ | <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Omeprazole and esomeprazole therapy are both associated with a low rate of transient and asymptomatic serum aminotransferase elevations and are rare causes of clinically apparent liver injury.</code> | <code>0.0</code> |
197
+ | <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Benefits of choosing a soft starter A variable frequency drive (VFD) is a motor control device that protects and controls the speed of an AC induction motor. A VFD can control the speed of the motor during the start and stop cycle, as well as throughout the run cycle.</code> | <code>0.0</code> |
198
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
199
+ ```json
200
+ {
201
+ "scale": 20.0,
202
+ "similarity_fct": "pairwise_cos_sim"
203
+ }
204
+ ```
205
+
206
+ ### Training Hyperparameters
207
+ #### Non-Default Hyperparameters
208
+
209
+ - `per_device_train_batch_size`: 16
210
+ - `per_device_eval_batch_size`: 16
211
+ - `num_train_epochs`: 1
212
+ - `warmup_ratio`: 0.1
213
+ - `seed`: 12
214
+ - `bf16`: True
215
+ - `dataloader_num_workers`: 4
216
+
217
+ #### All Hyperparameters
218
+ <details><summary>Click to expand</summary>
219
+
220
+ - `overwrite_output_dir`: False
221
+ - `do_predict`: False
222
+ - `eval_strategy`: no
223
+ - `prediction_loss_only`: True
224
+ - `per_device_train_batch_size`: 16
225
+ - `per_device_eval_batch_size`: 16
226
+ - `per_gpu_train_batch_size`: None
227
+ - `per_gpu_eval_batch_size`: None
228
+ - `gradient_accumulation_steps`: 1
229
+ - `eval_accumulation_steps`: None
230
+ - `torch_empty_cache_steps`: None
231
+ - `learning_rate`: 5e-05
232
+ - `weight_decay`: 0.0
233
+ - `adam_beta1`: 0.9
234
+ - `adam_beta2`: 0.999
235
+ - `adam_epsilon`: 1e-08
236
+ - `max_grad_norm`: 1.0
237
+ - `num_train_epochs`: 1
238
+ - `max_steps`: -1
239
+ - `lr_scheduler_type`: linear
240
+ - `lr_scheduler_kwargs`: {}
241
+ - `warmup_ratio`: 0.1
242
+ - `warmup_steps`: 0
243
+ - `log_level`: passive
244
+ - `log_level_replica`: warning
245
+ - `log_on_each_node`: True
246
+ - `logging_nan_inf_filter`: True
247
+ - `save_safetensors`: True
248
+ - `save_on_each_node`: False
249
+ - `save_only_model`: False
250
+ - `restore_callback_states_from_checkpoint`: False
251
+ - `no_cuda`: False
252
+ - `use_cpu`: False
253
+ - `use_mps_device`: False
254
+ - `seed`: 12
255
+ - `data_seed`: None
256
+ - `jit_mode_eval`: False
257
+ - `use_ipex`: False
258
+ - `bf16`: True
259
+ - `fp16`: False
260
+ - `fp16_opt_level`: O1
261
+ - `half_precision_backend`: auto
262
+ - `bf16_full_eval`: False
263
+ - `fp16_full_eval`: False
264
+ - `tf32`: None
265
+ - `local_rank`: 0
266
+ - `ddp_backend`: None
267
+ - `tpu_num_cores`: None
268
+ - `tpu_metrics_debug`: False
269
+ - `debug`: []
270
+ - `dataloader_drop_last`: False
271
+ - `dataloader_num_workers`: 4
272
+ - `dataloader_prefetch_factor`: None
273
+ - `past_index`: -1
274
+ - `disable_tqdm`: False
275
+ - `remove_unused_columns`: True
276
+ - `label_names`: None
277
+ - `load_best_model_at_end`: False
278
+ - `ignore_data_skip`: False
279
+ - `fsdp`: []
280
+ - `fsdp_min_num_params`: 0
281
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
282
+ - `tp_size`: 0
283
+ - `fsdp_transformer_layer_cls_to_wrap`: None
284
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
285
+ - `deepspeed`: None
286
+ - `label_smoothing_factor`: 0.0
287
+ - `optim`: adamw_torch
288
+ - `optim_args`: None
289
+ - `adafactor`: False
290
+ - `group_by_length`: False
291
+ - `length_column_name`: length
292
+ - `ddp_find_unused_parameters`: None
293
+ - `ddp_bucket_cap_mb`: None
294
+ - `ddp_broadcast_buffers`: False
295
+ - `dataloader_pin_memory`: True
296
+ - `dataloader_persistent_workers`: False
297
+ - `skip_memory_metrics`: True
298
+ - `use_legacy_prediction_loop`: False
299
+ - `push_to_hub`: False
300
+ - `resume_from_checkpoint`: None
301
+ - `hub_model_id`: None
302
+ - `hub_strategy`: every_save
303
+ - `hub_private_repo`: None
304
+ - `hub_always_push`: False
305
+ - `gradient_checkpointing`: False
306
+ - `gradient_checkpointing_kwargs`: None
307
+ - `include_inputs_for_metrics`: False
308
+ - `include_for_metrics`: []
309
+ - `eval_do_concat_batches`: True
310
+ - `fp16_backend`: auto
311
+ - `push_to_hub_model_id`: None
312
+ - `push_to_hub_organization`: None
313
+ - `mp_parameters`:
314
+ - `auto_find_batch_size`: False
315
+ - `full_determinism`: False
316
+ - `torchdynamo`: None
317
+ - `ray_scope`: last
318
+ - `ddp_timeout`: 1800
319
+ - `torch_compile`: False
320
+ - `torch_compile_backend`: None
321
+ - `torch_compile_mode`: None
322
+ - `include_tokens_per_second`: False
323
+ - `include_num_input_tokens_seen`: False
324
+ - `neftune_noise_alpha`: None
325
+ - `optim_target_modules`: None
326
+ - `batch_eval_metrics`: False
327
+ - `eval_on_start`: False
328
+ - `use_liger_kernel`: False
329
+ - `eval_use_gather_object`: False
330
+ - `average_tokens_across_devices`: False
331
+ - `prompts`: None
332
+ - `batch_sampler`: batch_sampler
333
+ - `multi_dataset_batch_sampler`: proportional
334
+
335
+ </details>
336
+
337
+ ### Training Logs
338
+ | Epoch | Step | Training Loss |
339
+ |:------:|:----:|:-------------:|
340
+ | 0.0027 | 1 | 0.3104 |
341
+
342
+
343
+ ### Framework Versions
344
+ - Python: 3.11.12
345
+ - Sentence Transformers: 4.1.0
346
+ - Transformers: 4.51.3
347
+ - PyTorch: 2.6.0+cu124
348
+ - Accelerate: 1.5.2
349
+ - Datasets: 3.5.0
350
+ - Tokenizers: 0.21.1
351
+
352
+ ## Citation
353
+
354
+ ### BibTeX
355
+
356
+ #### Sentence Transformers
357
+ ```bibtex
358
+ @inproceedings{reimers-2019-sentence-bert,
359
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
360
+ author = "Reimers, Nils and Gurevych, Iryna",
361
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
362
+ month = "11",
363
+ year = "2019",
364
+ publisher = "Association for Computational Linguistics",
365
+ url = "https://arxiv.org/abs/1908.10084",
366
+ }
367
+ ```
368
+
369
+ #### CoSENTLoss
370
+ ```bibtex
371
+ @online{kexuefm-8847,
372
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
373
+ author={Su Jianlin},
374
+ year={2022},
375
+ month={Jan},
376
+ url={https://kexue.fm/archives/8847},
377
+ }
378
+ ```
379
+
380
+ <!--
381
+ ## Glossary
382
+
383
+ *Clearly define terms in order to be accessible across audiences.*
384
+ -->
385
+
386
+ <!--
387
+ ## Model Card Authors
388
+
389
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Contact
394
+
395
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
396
+ -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8617819d481e36acc23459eb01555a7e5df0eff1ec8a10285ec70341de49faad
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff