add FAQ for tool calls.
Browse files- docs/tool_call_guidance.md +258 -241
docs/tool_call_guidance.md
CHANGED
@@ -1,241 +1,258 @@
|
|
1 |
-
## Tool Calling
|
2 |
-
To enable the tool calling feature, you may need to set certain tool calling parser options when starting the service. See [deploy_guidance](./deploy_guidance.md) for details.
|
3 |
-
In Kimi-K2, a tool calling process includes:
|
4 |
-
- Passing function descriptions to Kimi-K2
|
5 |
-
- Kimi-K2 decides to make a function call and returns the necessary information for the function call to the user
|
6 |
-
- The user performs the function call, collects the call results, and passes the function call results to Kimi-K2
|
7 |
-
- Kimi-K2 continues to generate content based on the function call results until the model believes it has obtained sufficient information to respond to the user
|
8 |
-
|
9 |
-
### Preparing Tools
|
10 |
-
Suppose we have a function `get_weather` that can query the weather conditions in real-time.
|
11 |
-
This function accepts a city name as a parameter and returns the weather conditions. We need to prepare a structured description for it so that Kimi-K2 can understand its functionality.
|
12 |
-
|
13 |
-
```python
|
14 |
-
def get_weather(city):
|
15 |
-
return {"weather": "Sunny"}
|
16 |
-
|
17 |
-
# Collect the tool descriptions in tools
|
18 |
-
tools = [{
|
19 |
-
"type": "function",
|
20 |
-
"function": {
|
21 |
-
"name": "get_weather",
|
22 |
-
"description": "Get weather information. Call this tool when the user needs to get weather information",
|
23 |
-
"parameters": {
|
24 |
-
"type": "object",
|
25 |
-
"required": ["city"],
|
26 |
-
"properties": {
|
27 |
-
"city": {
|
28 |
-
"type": "string",
|
29 |
-
"description": "City name",
|
30 |
-
}
|
31 |
-
}
|
32 |
-
}
|
33 |
-
}
|
34 |
-
}]
|
35 |
-
|
36 |
-
# Tool name->object mapping for easy calling later
|
37 |
-
tool_map = {
|
38 |
-
"get_weather": get_weather
|
39 |
-
}
|
40 |
-
```
|
41 |
-
### Chat with tools
|
42 |
-
We use `openai.OpenAI` to send messages to Kimi-K2 along with tool descriptions. Kimi-K2 will autonomously decide whether to use and how to use the provided tools.
|
43 |
-
If Kimi-K2 believes a tool call is needed, it will return a result with `finish_reason='tool_calls'`. At this point, the returned result includes the tool call information.
|
44 |
-
After calling tools with the provided information, we then need to append the tool call results to the chat history and continue calling Kimi-K2.
|
45 |
-
Kimi-K2 may need to call tools multiple times until the model believes the current results can answer the user's question. We should check `finish_reason` until it is not `tool_calls`.
|
46 |
-
|
47 |
-
The results obtained by the user after calling the tools should be added to `messages` with `role='tool'`.
|
48 |
-
|
49 |
-
```python
|
50 |
-
import json
|
51 |
-
from openai import OpenAI
|
52 |
-
model_name='moonshotai/Kimi-K2-Instruct'
|
53 |
-
client = OpenAI(base_url=endpoint,
|
54 |
-
api_key='xxx')
|
55 |
-
|
56 |
-
messages = [
|
57 |
-
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
58 |
-
]
|
59 |
-
finish_reason = None
|
60 |
-
while finish_reason is None or finish_reason == "tool_calls":
|
61 |
-
completion = client.chat.completions.create(
|
62 |
-
model=model_name,
|
63 |
-
messages=messages,
|
64 |
-
temperature=0.3,
|
65 |
-
tools=tools,
|
66 |
-
tool_choice="auto",
|
67 |
-
)
|
68 |
-
choice = completion.choices[0]
|
69 |
-
finish_reason = choice.finish_reason
|
70 |
-
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
71 |
-
if finish_reason == "tool_calls":
|
72 |
-
messages.append(choice.message)
|
73 |
-
for tool_call in choice.message.tool_calls:
|
74 |
-
tool_call_name = tool_call.function.name
|
75 |
-
tool_call_arguments = json.loads(tool_call.function.arguments)
|
76 |
-
tool_function = tool_map[tool_call_name]
|
77 |
-
tool_result = tool_function(tool_call_arguments)
|
78 |
-
print("tool_result", tool_result)
|
79 |
-
|
80 |
-
messages.append({
|
81 |
-
"role": "tool",
|
82 |
-
"tool_call_id": tool_call.id,
|
83 |
-
"name": tool_call_name,
|
84 |
-
"content": json.dumps(tool_result),
|
85 |
-
})
|
86 |
-
print('-' * 100)
|
87 |
-
print(choice.message.content)
|
88 |
-
```
|
89 |
-
### Tool Calling in Streaming Mode
|
90 |
-
Tool calling can also be used in streaming mode. In this case, we need to collect the tool call information returned in the stream until we have a complete tool call. Please refer to the code below:
|
91 |
-
|
92 |
-
```python
|
93 |
-
messages = [
|
94 |
-
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
95 |
-
]
|
96 |
-
finish_reason = None
|
97 |
-
msg = ''
|
98 |
-
while finish_reason is None or finish_reason == "tool_calls":
|
99 |
-
completion = client.chat.completions.create(
|
100 |
-
model=model_name,
|
101 |
-
messages=messages,
|
102 |
-
temperature=0.3,
|
103 |
-
tools=tools,
|
104 |
-
tool_choice="auto",
|
105 |
-
stream=True
|
106 |
-
)
|
107 |
-
tool_calls = []
|
108 |
-
for chunk in completion:
|
109 |
-
delta = chunk.choices[0].delta
|
110 |
-
if delta.content:
|
111 |
-
msg += delta.content
|
112 |
-
if delta.tool_calls:
|
113 |
-
for tool_call_chunk in delta.tool_calls:
|
114 |
-
if tool_call_chunk.index is not None:
|
115 |
-
# Extend the tool_calls list
|
116 |
-
while len(tool_calls) <= tool_call_chunk.index:
|
117 |
-
tool_calls.append({
|
118 |
-
"id": "",
|
119 |
-
"type": "function",
|
120 |
-
"function": {
|
121 |
-
"name": "",
|
122 |
-
"arguments": ""
|
123 |
-
}
|
124 |
-
})
|
125 |
-
|
126 |
-
tc = tool_calls[tool_call_chunk.index]
|
127 |
-
|
128 |
-
if tool_call_chunk.id:
|
129 |
-
tc["id"] += tool_call_chunk.id
|
130 |
-
if tool_call_chunk.function.name:
|
131 |
-
tc["function"]["name"] += tool_call_chunk.function.name
|
132 |
-
if tool_call_chunk.function.arguments:
|
133 |
-
tc["function"]["arguments"] += tool_call_chunk.function.arguments
|
134 |
-
|
135 |
-
finish_reason = chunk.choices[0].finish_reason
|
136 |
-
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
137 |
-
if finish_reason == "tool_calls":
|
138 |
-
for tool_call in tool_calls:
|
139 |
-
tool_call_name = tool_call['function']['name']
|
140 |
-
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
141 |
-
tool_function = tool_map[tool_call_name]
|
142 |
-
tool_result = tool_function(tool_call_arguments)
|
143 |
-
messages.append({
|
144 |
-
"role": "tool",
|
145 |
-
"tool_call_id": tool_call['id'],
|
146 |
-
"name": tool_call_name,
|
147 |
-
"content": json.dumps(tool_result),
|
148 |
-
})
|
149 |
-
# The text generated by the tool call is not the final version, reset msg
|
150 |
-
msg = ''
|
151 |
-
|
152 |
-
print(msg)
|
153 |
-
```
|
154 |
-
### Manually Parsing Tool Calls
|
155 |
-
The tool call requests generated by Kimi-K2 can also be parsed manually, which is especially useful when the service you are using does not provide a tool-call parser.
|
156 |
-
The tool call requests generated by Kimi-K2 are wrapped by `<|tool_calls_section_begin|>` and `<|tool_calls_section_end|>`,
|
157 |
-
with each tool call wrapped by `<|tool_call_begin|>` and `<|tool_call_end|>`. The tool ID and arguments are separated by `<|tool_call_argument_begin|>`.
|
158 |
-
The format of the tool ID is `functions.{func_name}:{idx}`, from which we can parse the function name.
|
159 |
-
|
160 |
-
Based on the above rules, we can directly post request to the completions interface and manually parse tool calls.
|
161 |
-
|
162 |
-
```python
|
163 |
-
import requests
|
164 |
-
from transformers import AutoTokenizer
|
165 |
-
messages = [
|
166 |
-
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
167 |
-
]
|
168 |
-
msg = ''
|
169 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
170 |
-
while True:
|
171 |
-
text = tokenizer.apply_chat_template(
|
172 |
-
messages,
|
173 |
-
tokenize=False,
|
174 |
-
tools=tools,
|
175 |
-
add_generation_prompt=True,
|
176 |
-
)
|
177 |
-
payload = {
|
178 |
-
"model": model_name,
|
179 |
-
"prompt": text,
|
180 |
-
"max_tokens": 512
|
181 |
-
}
|
182 |
-
response = requests.post(
|
183 |
-
f"{endpoint}/completions",
|
184 |
-
headers={"Content-Type": "application/json"},
|
185 |
-
json=payload,
|
186 |
-
stream=False,
|
187 |
-
)
|
188 |
-
raw_out = response.json()
|
189 |
-
|
190 |
-
raw_output = raw_out["choices"][0]["text"]
|
191 |
-
tool_calls = extract_tool_call_info(raw_output)
|
192 |
-
if len(tool_calls) == 0:
|
193 |
-
# No tool calls
|
194 |
-
msg = raw_output
|
195 |
-
break
|
196 |
-
else:
|
197 |
-
for tool_call in tool_calls:
|
198 |
-
tool_call_name = tool_call['function']['name']
|
199 |
-
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
200 |
-
tool_function = tool_map[tool_call_name]
|
201 |
-
tool_result = tool_function(tool_call_arguments)
|
202 |
-
|
203 |
-
messages.append({
|
204 |
-
"role": "tool",
|
205 |
-
"tool_call_id": tool_call['id'],
|
206 |
-
"name": tool_call_name,
|
207 |
-
"content": json.dumps(tool_result),
|
208 |
-
})
|
209 |
-
print('-' * 100)
|
210 |
-
print(msg)
|
211 |
-
```
|
212 |
-
Here, `extract_tool_call_info` parses the model output and returns the model call information. A simple implementation would be:
|
213 |
-
```python
|
214 |
-
def extract_tool_call_info(tool_call_rsp: str):
|
215 |
-
if '<|tool_calls_section_begin|>' not in tool_call_rsp:
|
216 |
-
# No tool calls
|
217 |
-
return []
|
218 |
-
import re
|
219 |
-
pattern = r"<\|tool_calls_section_begin\|>(.*?)<\|tool_calls_section_end\|>"
|
220 |
-
|
221 |
-
tool_calls_sections = re.findall(pattern, tool_call_rsp, re.DOTALL)
|
222 |
-
|
223 |
-
# Extract multiple tool calls
|
224 |
-
func_call_pattern = r"<\|tool_call_begin\|>\s*(?P<tool_call_id>[\w\.]+:\d+)\s*<\|tool_call_argument_begin\|>\s*(?P<function_arguments>.*?)\s*<\|tool_call_end\|>"
|
225 |
-
tool_calls = []
|
226 |
-
for match in re.findall(func_call_pattern, tool_calls_sections[0], re.DOTALL):
|
227 |
-
function_id, function_args = match
|
228 |
-
# function_id: functions.get_weather:0
|
229 |
-
function_name = function_id.split('.')[1].split(':')[0]
|
230 |
-
tool_calls.append(
|
231 |
-
{
|
232 |
-
"id": function_id,
|
233 |
-
"type": "function",
|
234 |
-
"function": {
|
235 |
-
"name": function_name,
|
236 |
-
"arguments": function_args
|
237 |
-
}
|
238 |
-
}
|
239 |
-
)
|
240 |
-
return tool_calls
|
241 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Tool Calling
|
2 |
+
To enable the tool calling feature, you may need to set certain tool calling parser options when starting the service. See [deploy_guidance](./deploy_guidance.md) for details.
|
3 |
+
In Kimi-K2, a tool calling process includes:
|
4 |
+
- Passing function descriptions to Kimi-K2
|
5 |
+
- Kimi-K2 decides to make a function call and returns the necessary information for the function call to the user
|
6 |
+
- The user performs the function call, collects the call results, and passes the function call results to Kimi-K2
|
7 |
+
- Kimi-K2 continues to generate content based on the function call results until the model believes it has obtained sufficient information to respond to the user
|
8 |
+
|
9 |
+
### Preparing Tools
|
10 |
+
Suppose we have a function `get_weather` that can query the weather conditions in real-time.
|
11 |
+
This function accepts a city name as a parameter and returns the weather conditions. We need to prepare a structured description for it so that Kimi-K2 can understand its functionality.
|
12 |
+
|
13 |
+
```python
|
14 |
+
def get_weather(city):
|
15 |
+
return {"weather": "Sunny"}
|
16 |
+
|
17 |
+
# Collect the tool descriptions in tools
|
18 |
+
tools = [{
|
19 |
+
"type": "function",
|
20 |
+
"function": {
|
21 |
+
"name": "get_weather",
|
22 |
+
"description": "Get weather information. Call this tool when the user needs to get weather information",
|
23 |
+
"parameters": {
|
24 |
+
"type": "object",
|
25 |
+
"required": ["city"],
|
26 |
+
"properties": {
|
27 |
+
"city": {
|
28 |
+
"type": "string",
|
29 |
+
"description": "City name",
|
30 |
+
}
|
31 |
+
}
|
32 |
+
}
|
33 |
+
}
|
34 |
+
}]
|
35 |
+
|
36 |
+
# Tool name->object mapping for easy calling later
|
37 |
+
tool_map = {
|
38 |
+
"get_weather": get_weather
|
39 |
+
}
|
40 |
+
```
|
41 |
+
### Chat with tools
|
42 |
+
We use `openai.OpenAI` to send messages to Kimi-K2 along with tool descriptions. Kimi-K2 will autonomously decide whether to use and how to use the provided tools.
|
43 |
+
If Kimi-K2 believes a tool call is needed, it will return a result with `finish_reason='tool_calls'`. At this point, the returned result includes the tool call information.
|
44 |
+
After calling tools with the provided information, we then need to append the tool call results to the chat history and continue calling Kimi-K2.
|
45 |
+
Kimi-K2 may need to call tools multiple times until the model believes the current results can answer the user's question. We should check `finish_reason` until it is not `tool_calls`.
|
46 |
+
|
47 |
+
The results obtained by the user after calling the tools should be added to `messages` with `role='tool'`.
|
48 |
+
|
49 |
+
```python
|
50 |
+
import json
|
51 |
+
from openai import OpenAI
|
52 |
+
model_name='moonshotai/Kimi-K2-Instruct'
|
53 |
+
client = OpenAI(base_url=endpoint,
|
54 |
+
api_key='xxx')
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
58 |
+
]
|
59 |
+
finish_reason = None
|
60 |
+
while finish_reason is None or finish_reason == "tool_calls":
|
61 |
+
completion = client.chat.completions.create(
|
62 |
+
model=model_name,
|
63 |
+
messages=messages,
|
64 |
+
temperature=0.3,
|
65 |
+
tools=tools,
|
66 |
+
tool_choice="auto",
|
67 |
+
)
|
68 |
+
choice = completion.choices[0]
|
69 |
+
finish_reason = choice.finish_reason
|
70 |
+
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
71 |
+
if finish_reason == "tool_calls":
|
72 |
+
messages.append(choice.message)
|
73 |
+
for tool_call in choice.message.tool_calls:
|
74 |
+
tool_call_name = tool_call.function.name
|
75 |
+
tool_call_arguments = json.loads(tool_call.function.arguments)
|
76 |
+
tool_function = tool_map[tool_call_name]
|
77 |
+
tool_result = tool_function(tool_call_arguments)
|
78 |
+
print("tool_result", tool_result)
|
79 |
+
|
80 |
+
messages.append({
|
81 |
+
"role": "tool",
|
82 |
+
"tool_call_id": tool_call.id,
|
83 |
+
"name": tool_call_name,
|
84 |
+
"content": json.dumps(tool_result),
|
85 |
+
})
|
86 |
+
print('-' * 100)
|
87 |
+
print(choice.message.content)
|
88 |
+
```
|
89 |
+
### Tool Calling in Streaming Mode
|
90 |
+
Tool calling can also be used in streaming mode. In this case, we need to collect the tool call information returned in the stream until we have a complete tool call. Please refer to the code below:
|
91 |
+
|
92 |
+
```python
|
93 |
+
messages = [
|
94 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
95 |
+
]
|
96 |
+
finish_reason = None
|
97 |
+
msg = ''
|
98 |
+
while finish_reason is None or finish_reason == "tool_calls":
|
99 |
+
completion = client.chat.completions.create(
|
100 |
+
model=model_name,
|
101 |
+
messages=messages,
|
102 |
+
temperature=0.3,
|
103 |
+
tools=tools,
|
104 |
+
tool_choice="auto",
|
105 |
+
stream=True
|
106 |
+
)
|
107 |
+
tool_calls = []
|
108 |
+
for chunk in completion:
|
109 |
+
delta = chunk.choices[0].delta
|
110 |
+
if delta.content:
|
111 |
+
msg += delta.content
|
112 |
+
if delta.tool_calls:
|
113 |
+
for tool_call_chunk in delta.tool_calls:
|
114 |
+
if tool_call_chunk.index is not None:
|
115 |
+
# Extend the tool_calls list
|
116 |
+
while len(tool_calls) <= tool_call_chunk.index:
|
117 |
+
tool_calls.append({
|
118 |
+
"id": "",
|
119 |
+
"type": "function",
|
120 |
+
"function": {
|
121 |
+
"name": "",
|
122 |
+
"arguments": ""
|
123 |
+
}
|
124 |
+
})
|
125 |
+
|
126 |
+
tc = tool_calls[tool_call_chunk.index]
|
127 |
+
|
128 |
+
if tool_call_chunk.id:
|
129 |
+
tc["id"] += tool_call_chunk.id
|
130 |
+
if tool_call_chunk.function.name:
|
131 |
+
tc["function"]["name"] += tool_call_chunk.function.name
|
132 |
+
if tool_call_chunk.function.arguments:
|
133 |
+
tc["function"]["arguments"] += tool_call_chunk.function.arguments
|
134 |
+
|
135 |
+
finish_reason = chunk.choices[0].finish_reason
|
136 |
+
# Note: The finish_reason when tool calls end may vary across different engines, so this condition check needs to be adjusted accordingly
|
137 |
+
if finish_reason == "tool_calls":
|
138 |
+
for tool_call in tool_calls:
|
139 |
+
tool_call_name = tool_call['function']['name']
|
140 |
+
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
141 |
+
tool_function = tool_map[tool_call_name]
|
142 |
+
tool_result = tool_function(tool_call_arguments)
|
143 |
+
messages.append({
|
144 |
+
"role": "tool",
|
145 |
+
"tool_call_id": tool_call['id'],
|
146 |
+
"name": tool_call_name,
|
147 |
+
"content": json.dumps(tool_result),
|
148 |
+
})
|
149 |
+
# The text generated by the tool call is not the final version, reset msg
|
150 |
+
msg = ''
|
151 |
+
|
152 |
+
print(msg)
|
153 |
+
```
|
154 |
+
### Manually Parsing Tool Calls
|
155 |
+
The tool call requests generated by Kimi-K2 can also be parsed manually, which is especially useful when the service you are using does not provide a tool-call parser.
|
156 |
+
The tool call requests generated by Kimi-K2 are wrapped by `<|tool_calls_section_begin|>` and `<|tool_calls_section_end|>`,
|
157 |
+
with each tool call wrapped by `<|tool_call_begin|>` and `<|tool_call_end|>`. The tool ID and arguments are separated by `<|tool_call_argument_begin|>`.
|
158 |
+
The format of the tool ID is `functions.{func_name}:{idx}`, from which we can parse the function name.
|
159 |
+
|
160 |
+
Based on the above rules, we can directly post request to the completions interface and manually parse tool calls.
|
161 |
+
|
162 |
+
```python
|
163 |
+
import requests
|
164 |
+
from transformers import AutoTokenizer
|
165 |
+
messages = [
|
166 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Let's check using the tool."}
|
167 |
+
]
|
168 |
+
msg = ''
|
169 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
170 |
+
while True:
|
171 |
+
text = tokenizer.apply_chat_template(
|
172 |
+
messages,
|
173 |
+
tokenize=False,
|
174 |
+
tools=tools,
|
175 |
+
add_generation_prompt=True,
|
176 |
+
)
|
177 |
+
payload = {
|
178 |
+
"model": model_name,
|
179 |
+
"prompt": text,
|
180 |
+
"max_tokens": 512
|
181 |
+
}
|
182 |
+
response = requests.post(
|
183 |
+
f"{endpoint}/completions",
|
184 |
+
headers={"Content-Type": "application/json"},
|
185 |
+
json=payload,
|
186 |
+
stream=False,
|
187 |
+
)
|
188 |
+
raw_out = response.json()
|
189 |
+
|
190 |
+
raw_output = raw_out["choices"][0]["text"]
|
191 |
+
tool_calls = extract_tool_call_info(raw_output)
|
192 |
+
if len(tool_calls) == 0:
|
193 |
+
# No tool calls
|
194 |
+
msg = raw_output
|
195 |
+
break
|
196 |
+
else:
|
197 |
+
for tool_call in tool_calls:
|
198 |
+
tool_call_name = tool_call['function']['name']
|
199 |
+
tool_call_arguments = json.loads(tool_call['function']['arguments'])
|
200 |
+
tool_function = tool_map[tool_call_name]
|
201 |
+
tool_result = tool_function(tool_call_arguments)
|
202 |
+
|
203 |
+
messages.append({
|
204 |
+
"role": "tool",
|
205 |
+
"tool_call_id": tool_call['id'],
|
206 |
+
"name": tool_call_name,
|
207 |
+
"content": json.dumps(tool_result),
|
208 |
+
})
|
209 |
+
print('-' * 100)
|
210 |
+
print(msg)
|
211 |
+
```
|
212 |
+
Here, `extract_tool_call_info` parses the model output and returns the model call information. A simple implementation would be:
|
213 |
+
```python
|
214 |
+
def extract_tool_call_info(tool_call_rsp: str):
|
215 |
+
if '<|tool_calls_section_begin|>' not in tool_call_rsp:
|
216 |
+
# No tool calls
|
217 |
+
return []
|
218 |
+
import re
|
219 |
+
pattern = r"<\|tool_calls_section_begin\|>(.*?)<\|tool_calls_section_end\|>"
|
220 |
+
|
221 |
+
tool_calls_sections = re.findall(pattern, tool_call_rsp, re.DOTALL)
|
222 |
+
|
223 |
+
# Extract multiple tool calls
|
224 |
+
func_call_pattern = r"<\|tool_call_begin\|>\s*(?P<tool_call_id>[\w\.]+:\d+)\s*<\|tool_call_argument_begin\|>\s*(?P<function_arguments>.*?)\s*<\|tool_call_end\|>"
|
225 |
+
tool_calls = []
|
226 |
+
for match in re.findall(func_call_pattern, tool_calls_sections[0], re.DOTALL):
|
227 |
+
function_id, function_args = match
|
228 |
+
# function_id: functions.get_weather:0
|
229 |
+
function_name = function_id.split('.')[1].split(':')[0]
|
230 |
+
tool_calls.append(
|
231 |
+
{
|
232 |
+
"id": function_id,
|
233 |
+
"type": "function",
|
234 |
+
"function": {
|
235 |
+
"name": function_name,
|
236 |
+
"arguments": function_args
|
237 |
+
}
|
238 |
+
}
|
239 |
+
)
|
240 |
+
return tool_calls
|
241 |
+
```
|
242 |
+
|
243 |
+
## FAQ
|
244 |
+
|
245 |
+
#### Q1: I received special tokens like '<|tool_call_begin|>' in the 'content' field instead of a normal tool_call.
|
246 |
+
|
247 |
+
This indicates a tool-call crash, which most often occurs in multi-turn tool-calling scenarios due to incorrect tool-call ID. K2 expects the ID to follow the format `functions.func_name:idx`, where `functions` is a fixed string; `func_name` is the actual function name, like `get_weather`, and `idx` is a global counter that starts at 0 and increments with each function invocation.
|
248 |
+
Please check all tool-call IDs in the message list.
|
249 |
+
|
250 |
+
|
251 |
+
#### Q2: My tool-call ID is incorrect—how can I fix it?
|
252 |
+
|
253 |
+
First, make sure your code and chat template are up to date with the latest version from the Hugging Face repo.
|
254 |
+
If you're using vLLM or SGLang and they are generating random tool-call IDs, upgrade them to the latest release. For other frameworks, you must either parse the tool-call ID from the model output and set it correctly in the server-side response, or rewrite every tool-call ID according to the rules above on the client side before sending the messages to Kimi K2.
|
255 |
+
|
256 |
+
#### Q3: My tool call id is correct, but I still get crashed in multiturn tool call.
|
257 |
+
|
258 |
+
Please describe your situation in the [discussion](https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905/discussions)
|