import torch import torch.nn as nn from torch.nn import functional as F from bitblas.cache import OperatorCache from .layers import layer_norm, mlp, Linear from .rope import apply_rotary_emb, precompute_freqs_cis from .config import TextConfig def text_encoder(input_ids: torch.Tensor, w: nn.Module): return F.embedding(input_ids, w.wte) def attn( x: torch.Tensor, w: nn.Module, freqs_cis: torch.Tensor, kv_cache: nn.Module, attn_mask: torch.Tensor, n_heads: int, n_kv_heads: int, position_ids: torch.Tensor, ): bsz, q_len, d_model = x.shape head_dim = d_model // n_heads qkv_out = w.qkv(x) # shape: (bsz, q_len, (n_heads + 2*n_kv_heads)*head_dim) q_dim = n_heads * head_dim kv_dim = n_kv_heads * head_dim q = qkv_out[..., :q_dim].view(bsz, q_len, n_heads, head_dim).transpose(1, 2) k = ( qkv_out[..., q_dim : q_dim + kv_dim] .view(bsz, q_len, n_kv_heads, head_dim) .transpose(1, 2) ) v = ( qkv_out[..., q_dim + kv_dim :] .view(bsz, q_len, n_kv_heads, head_dim) .transpose(1, 2) ) q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads) k = apply_rotary_emb(k, freqs_cis, position_ids, n_kv_heads) if kv_cache is not None: k, v = kv_cache.update(position_ids, k, v) out = F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, enable_gqa=n_heads != n_kv_heads ) out = out.transpose(1, 2).reshape(bsz, q_len, d_model) out = w.proj(out) return out def text_decoder( x: torch.Tensor, w: nn.Module, attn_mask: torch.Tensor, position_ids: torch.Tensor, config: TextConfig, ): for i, block in enumerate(w.blocks): l_in = layer_norm(x, block.ln) l_attn = attn( l_in, block.attn, freqs_cis=w.freqs_cis, kv_cache=block.kv_cache, attn_mask=attn_mask, n_heads=config.n_heads, n_kv_heads=config.n_kv_heads, position_ids=position_ids, ) l_mlp = mlp(l_in, block.mlp) x = x + l_attn + l_mlp return x def lm_head(hidden_BTC: torch.Tensor, w: nn.Module): hidden_BC = hidden_BTC[:, -1, :] hidden_BC = layer_norm(hidden_BC, w.post_ln) logits = w.lm_head(hidden_BC) return logits def build_text_model( config: TextConfig, linear_dtype: torch.dtype = torch.float16, layernorm_dtype: torch.dtype = torch.float16, ) -> nn.Module: # note : layernorm dtype is used for layernorm, lm_head and wte not just layernorm print( "Initializing quantized backend. This only has to run once, but may take a few minutes." ) qkv_dim = int(config.dim * (1 + 2 * config.n_kv_heads / config.n_heads)) group_size = None if linear_dtype == torch.int8: group_size = config.group_size def create_linear(in_features, out_features, dtype=linear_dtype): # factory function for creating Linear layers so we dont have to pass everything again and again return Linear( in_features=in_features, out_features=out_features, dtype=dtype, group_size=group_size, ) text = nn.ModuleDict( { "blocks": nn.ModuleList( [ nn.ModuleDict( { "ln": nn.LayerNorm(config.dim, dtype=layernorm_dtype), "attn": nn.ModuleDict( { "qkv": create_linear(config.dim, qkv_dim), "proj": create_linear(config.dim, config.dim), } ), "mlp": nn.ModuleDict( { "fc1": create_linear(config.dim, config.ff_dim), "fc2": create_linear(config.ff_dim, config.dim), } ), } ) for _ in range(config.n_layers) ] ), "post_ln": nn.LayerNorm(config.dim, dtype=layernorm_dtype), "lm_head": nn.Linear(config.dim, config.vocab_size, dtype=layernorm_dtype), } ) text.wte = nn.Parameter( torch.empty(config.vocab_size, config.dim, dtype=layernorm_dtype) ) text.register_buffer( "freqs_cis", precompute_freqs_cis(config.dim // (2 * config.n_heads), config.max_context), persistent=False, ) return text