EthanReid
Initial import of code and 4-bit weights
1c87faa
raw
history blame
10.4 kB
import safetensors
import torch
import torch.nn as nn
import re
from contextlib import contextmanager
from typing import Callable, List
from .text import build_text_model
from .config import TextConfig
# Our custom linear has an module named linear, so we add linear to the name
def add_linear_to_key(k: str) -> str:
k = k.replace("model.", "")
if k.startswith("text.") and ".linear." not in k:
k = re.sub(
r"(attn\.(?:qkv|proj)|mlp\.fc[12])\.(weight|bias)$",
r"\1.linear.\2",
k,
)
return k
@contextmanager
def safetensors_open(safetensors_file: str):
"""
Simplify interfacing with safetensors files. Eliminates the need to ignore
type errors when using the `safe_open` function.
"""
with safetensors.safe_open(
safetensors_file, framework="pt"
) as st: # pyright: ignore
def get_tensor(name: str) -> torch.Tensor:
return st.get_tensor(name)
def get_keys() -> List[str]:
return st.keys()
get_tensor.keys = get_keys
yield get_tensor
def _load_weights(
get_tensor: Callable[[str], torch.Tensor],
model: nn.Module,
is_quantized: bool = False,
) -> None:
"""Internal function to load weights using a tensor getter function."""
model = model.to(dtype=torch.float16)
vision = model.vision
region = model.region
weight_map = {
"vision_encoder.encoder.model.visual.patch_embed.linear.weight": vision[
"patch_emb"
].weight,
"vision_encoder.encoder.model.visual.patch_embed.linear.bias": vision[
"patch_emb"
].bias,
"vision_encoder.encoder.model.visual.pos_embed": vision.pos_emb,
"vision_encoder.encoder.model.visual.norm.weight": vision["post_ln"].weight,
"vision_encoder.encoder.model.visual.norm.bias": vision["post_ln"].bias,
"vision_encoder.projection.mlp.fc1.weight": vision["proj_mlp"]["fc1"].weight,
"vision_encoder.projection.mlp.fc1.bias": vision["proj_mlp"]["fc1"].bias,
"vision_encoder.projection.mlp.fc2.weight": vision["proj_mlp"]["fc2"].weight,
"vision_encoder.projection.mlp.fc2.bias": vision["proj_mlp"]["fc2"].bias,
"text_model.transformer.embd.wte.weight": model.text.wte,
"text_model.lm_head.ln.weight": model.text["post_ln"].weight,
"text_model.lm_head.ln.bias": model.text["post_ln"].bias,
"text_model.lm_head.linear.weight": model.text["lm_head"].weight,
"text_model.lm_head.linear.bias": model.text["lm_head"].bias,
"region_model.coordinate_encoder.weight": region["coord_encoder"].weight,
"region_model.coordinate_encoder.bias": region["coord_encoder"].bias,
"region_model.coordinate_decoder.fc1.weight": region["coord_decoder"][
"fc1"
].weight,
"region_model.coordinate_decoder.fc1.bias": region["coord_decoder"]["fc1"].bias,
"region_model.coordinate_decoder.fc2.weight": region["coord_decoder"][
"fc2"
].weight,
"region_model.coordinate_decoder.fc2.bias": region["coord_decoder"]["fc2"].bias,
"region_model.size_encoder.weight": region["size_encoder"].weight,
"region_model.size_encoder.bias": region["size_encoder"].bias,
"region_model.size_decoder.fc1.weight": region["size_decoder"]["fc1"].weight,
"region_model.size_decoder.fc1.bias": region["size_decoder"]["fc1"].bias,
"region_model.size_decoder.fc2.weight": region["size_decoder"]["fc2"].weight,
"region_model.size_decoder.fc2.bias": region["size_decoder"]["fc2"].bias,
}
for i in range(len(model.vision["blocks"])):
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
blk = model.vision["blocks"][i]
weight_map.update(
{
f"{prefix}.norm1.weight": blk["ln1"].weight,
f"{prefix}.norm1.bias": blk["ln1"].bias,
f"{prefix}.norm2.weight": blk["ln2"].weight,
f"{prefix}.norm2.bias": blk["ln2"].bias,
f"{prefix}.attn.qkv.weight": blk["attn"]["qkv"].weight,
f"{prefix}.attn.qkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.attn.proj.weight": blk["attn"]["proj"].weight,
f"{prefix}.attn.proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.weight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.weight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
if not is_quantized:
for i in range(len(model.text["blocks"])):
prefix = f"text_model.transformer.h.{i}"
blk = model.text["blocks"][i]
weight_map.update(
{
f"{prefix}.ln.weight": blk["ln"].weight,
f"{prefix}.ln.bias": blk["ln"].bias,
f"{prefix}.mixer.Wqkv.weight": blk["attn"]["qkv"].weight,
f"{prefix}.mixer.Wqkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.mixer.out_proj.weight": blk["attn"]["proj"].weight,
f"{prefix}.mixer.out_proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.weight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.weight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
else: # add special quantized path. this is specific to how bitblas expects weights to be loaded (.qweight)
for i in range(len(model.text["blocks"])):
prefix = f"text_model.transformer.h.{i}"
blk = model.text["blocks"][i]
weight_map.update(
{
f"{prefix}.ln.qweight": blk["ln"].weight,
f"{prefix}.ln.bias": blk["ln"].bias,
f"{prefix}.mixer.Wqkv.qweight": blk["attn"]["qkv"].weight,
f"{prefix}.mixer.Wqkv.bias": blk["attn"]["qkv"].bias,
f"{prefix}.mixer.out_proj.qweight": blk["attn"]["proj"].weight,
f"{prefix}.mixer.out_proj.bias": blk["attn"]["proj"].bias,
f"{prefix}.mlp.fc1.qweight": blk["mlp"]["fc1"].weight,
f"{prefix}.mlp.fc1.bias": blk["mlp"]["fc1"].bias,
f"{prefix}.mlp.fc2.qweight": blk["mlp"]["fc2"].weight,
f"{prefix}.mlp.fc2.bias": blk["mlp"]["fc2"].bias,
}
)
for key, tensor in weight_map.items():
tensor.data.copy_(get_tensor(key))
region.coord_features.data.copy_(
get_tensor("region_model.coordinate_features.weight").T
)
region.size_features.data.copy_(get_tensor("region_model.size_features.weight").T)
def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
"""Load weights from a safetensors file into a MoondreamModel instance."""
with safetensors_open(weights_file) as get_tensor:
all_keys = get_tensor.keys()
is_quantized = any(
".qweight" in key or "_quantized" in key or "quant." in key
for key in all_keys
)
if "text_model.transformer.h.0.ln.weight" in all_keys:
layernorm_dtype = get_tensor("text_model.transformer.h.0.ln.weight").dtype
else:
layernorm_dtype = torch.float16
linear_dtype = torch.int8 if is_quantized else torch.float16
model.text = build_text_model(
TextConfig, linear_dtype=linear_dtype, layernorm_dtype=layernorm_dtype
)
if model.setup_caches_flag:
model._setup_caches()
if (
"vision.blocks.0.attn.proj.bias" in all_keys
or "model.vision.blocks.0.attn.proj.bias" in all_keys
):
with safetensors_open(weights_file) as get_tensor:
tensors = {add_linear_to_key(k): get_tensor(k) for k in all_keys}
model.load_state_dict(tensors, strict=False)
else:
# Wrap the get_tensor function to handle key normalization
name_map = {k.replace("._orig_mod", ""): k for k in all_keys}
_load_weights(
lambda x: get_tensor(name_map[x]).to(dtype=torch.float16),
model,
is_quantized,
)
def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
"""Load weights from a PyTorch file into a MoondreamModel instance."""
tensors = torch.load(weights_file, map_location="cpu", weights_only=True)
all_keys = tensors.keys()
is_quantized = any(
".qweight" in key or "_quantized" in key or "quant." in key for key in all_keys
)
if "text.blocks.0.ln.weight" in all_keys:
layernorm_dtype = tensors["text.blocks.0.ln.weight"].dtype
else:
layernorm_dtype = torch.float16
linear_dtype = torch.int8 if is_quantized else torch.float16
model.text = build_text_model(
TextConfig, linear_dtype=linear_dtype, layernorm_dtype=layernorm_dtype
)
if model.setup_caches_flag:
model._setup_caches()
if (
"vision.blocks.0.attn.proj.bias" in all_keys
or "model.vision.blocks.0.attn.proj.bias" in all_keys
):
tensors = {add_linear_to_key(k): v for k, v in tensors.items()}
model.load_state_dict(tensors, strict=False)
else:
tensors = {
k.replace("._orig_mod", ""): v.to(dtype=torch.float16)
for k, v in tensors.items()
}
_load_weights(lambda x: tensors[x], model, is_quantized)
def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
"""
Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.
Args:
weights_file: Path to weights file (either .safetensors or .pt)
model: MoondreamModel instance to load weights into
"""
if weights_file.endswith(".safetensors"):
load_weights_from_safetensors(weights_file, model)
else:
load_weights_from_pt(weights_file, model)
# Make all parameters contiguous
for param in model.parameters():
param.data = param.data.contiguous()