File size: 3,588 Bytes
1c87faa
 
9b4ed9c
1c87faa
 
 
9b4ed9c
 
 
 
1c87faa
 
 
 
 
 
 
 
 
 
 
 
9b4ed9c
 
 
1c87faa
9b4ed9c
1c87faa
 
 
 
9b4ed9c
1c87faa
9b4ed9c
1c87faa
9b4ed9c
 
 
 
 
 
80427a0
9b4ed9c
 
 
f089fb8
80427a0
 
f089fb8
 
80427a0
 
9b4ed9c
 
 
 
 
 
 
30185df
 
80427a0
9b4ed9c
 
 
f089fb8
 
80427a0
9b4ed9c
1c87faa
9b4ed9c
 
1c87faa
9b4ed9c
1c87faa
9b4ed9c
 
 
 
80427a0
9b4ed9c
 
 
80427a0
9b4ed9c
 
 
 
1c87faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F

from dataclasses import dataclass
from typing import Literal
from torchao import quantize_
from torchao.quantization import int4_weight_only

from .packing import dequantize_tensor


def gelu_approx(x):
    return F.gelu(x, approximate="tanh")


@dataclass
class LinearWeights:
    weight: torch.Tensor
    bias: torch.Tensor


def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
    return F.linear(x, w.weight, w.bias)


class QuantizedLinear(nn.Module):
    def __init__(
        self,
        in_features: int,
        out_features: int,
        dtype: torch.dtype,
    ):
        # TODO: Take group_size as an input instead of hardcoding it here.
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.ParameterDict(
            {
                "packed": nn.Parameter(
                    torch.empty(
                        out_features * in_features // (128 * 2), 128, dtype=torch.uint8
                    ),
                    requires_grad=False,
                ),
                "scale": nn.Parameter(
                    torch.empty(out_features * in_features // 128, 1),
                    requires_grad=False,
                ),
                "zero_point": nn.Parameter(
                    torch.empty(out_features * in_features // 128, 1),
                    requires_grad=False,
                ),
            }
        )
        self.bias = nn.Parameter(torch.empty(out_features), requires_grad=False)
        self.unpacked = False

    def unpack(self):
        if self.unpacked:
            return

        self.weight = nn.Parameter(
            dequantize_tensor(
                self.weight["packed"],
                self.weight["scale"],
                self.weight["zero_point"],
                (self.out_features, self.in_features),
                torch.bfloat16,
            )
        )
        with torch.device("meta"):
            self.linear = nn.Linear(
                self.in_features, self.out_features, dtype=torch.bfloat16
            )
        self.linear.weight = self.weight
        self.linear.bias = nn.Parameter(
            self.bias.to(torch.bfloat16), requires_grad=False
        )

        del self.weight, self.bias
        quantize_(self, int4_weight_only(group_size=128))
        self.unpacked = True
        torch.cuda.empty_cache()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if not self.unpacked:
            self.unpack()
        return self.linear(x)


@dataclass
class LayerNormWeights:
    weight: torch.Tensor
    bias: torch.Tensor


def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
    return F.layer_norm(x, w.bias.shape, w.weight, w.bias)


@dataclass
class MLPWeights:
    fc1: LinearWeights
    fc2: LinearWeights
    act: Literal["gelu_approx"] = "gelu_approx"


def mlp(x: torch.Tensor, w: MLPWeights) -> torch.Tensor:
    x = w.fc1(x)
    x = gelu_approx(x)
    x = w.fc2(x)
    return x


@dataclass
class AttentionWeights:
    qkv: LinearWeights
    proj: LinearWeights


def attn(x: torch.Tensor, w: AttentionWeights, n_heads: int) -> torch.Tensor:
    bsz, q_len, d_model = x.shape
    head_dim = d_model // n_heads

    q, k, v = [
        t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
        for t in linear(x, w.qkv).chunk(3, dim=-1)
    ]
    out = F.scaled_dot_product_attention(q, k, v)
    out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
    out = linear(out, w.proj)
    return out