Update README.md
Browse files
README.md
CHANGED
@@ -62,14 +62,16 @@ In terms of actual outcomes and errors in outputs, see our [readme](https://gith
|
|
62 |
|
63 |
To use this model, you will need to install the transformers and sentencepiece libraries:
|
64 |
|
65 |
-
|
66 |
|
67 |
You can then use the model directly through the pipeline API, which provides a high-level interface for text generation:
|
|
|
68 |
from transformers import pipeline
|
69 |
pipe = pipeline("text2text-generation", model="mongrz/model_output")
|
70 |
gender_neutral_text = pipe("Pielęgniarki protestują pod sejmem.")
|
71 |
print(gender_neutral_text)
|
72 |
#expected output: [{'generated_text': 'Osoby pielęgniarskie protestują pod sejmem.'}]
|
|
|
73 |
This will create a pipeline object for text-to-text generation using your model. You can then pass the input text to the pipe object to generate the gender-neutral version. The output will be a list of dictionaries, each containing the generated text.
|
74 |
Alternatively, you can still load the tokenizer and model manually for more fine-grained control:
|
75 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
@@ -85,6 +87,7 @@ Alternatively, you can still load the tokenizer and model manually for more fine
|
|
85 |
|
86 |
#Decode and print the generated text
|
87 |
print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
|
|
|
88 |
This approach allows you to access the tokenizer and model directly and customize the generation process further if needed. Choose the method that best suits your needs.
|
89 |
|
90 |
## Intended uses & limitations
|
|
|
62 |
|
63 |
To use this model, you will need to install the transformers and sentencepiece libraries:
|
64 |
|
65 |
+
!pip install transformers sentencepiece
|
66 |
|
67 |
You can then use the model directly through the pipeline API, which provides a high-level interface for text generation:
|
68 |
+
|
69 |
from transformers import pipeline
|
70 |
pipe = pipeline("text2text-generation", model="mongrz/model_output")
|
71 |
gender_neutral_text = pipe("Pielęgniarki protestują pod sejmem.")
|
72 |
print(gender_neutral_text)
|
73 |
#expected output: [{'generated_text': 'Osoby pielęgniarskie protestują pod sejmem.'}]
|
74 |
+
|
75 |
This will create a pipeline object for text-to-text generation using your model. You can then pass the input text to the pipe object to generate the gender-neutral version. The output will be a list of dictionaries, each containing the generated text.
|
76 |
Alternatively, you can still load the tokenizer and model manually for more fine-grained control:
|
77 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
87 |
|
88 |
#Decode and print the generated text
|
89 |
print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
|
90 |
+
|
91 |
This approach allows you to access the tokenizer and model directly and customize the generation process further if needed. Choose the method that best suits your needs.
|
92 |
|
93 |
## Intended uses & limitations
|