File size: 2,015 Bytes
543c6fd
 
 
8cc50fb
543c6fd
 
 
 
 
 
 
4cb1899
 
543c6fd
 
 
 
 
 
 
8cc50fb
543c6fd
8cc50fb
 
 
543c6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc50fb
 
543c6fd
bd00bcf
8cc50fb
bd00bcf
 
543c6fd
8cc50fb
543c6fd
 
 
 
bd00bcf
 
8cc50fb
 
 
 
 
 
 
543c6fd
 
 
 
 
 
 
4cb1899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: mit
base_model: facebook/m2m100_1.2B
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: model_output
  results: []
datasets:
- ArielUW/jobtitles
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model_output

This model is a fine-tuned version of [facebook/m2m100_1.2B](https://huggingface.co/facebook/m2m100_1.2B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7263
- Bleu: 93.9441
- Gen Len: 36.358

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAFACTOR and the args are:
No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Bleu    | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|
| 23.051        | 1.0    | 38   | 4.3445          | 89.5045 | 35.746  |
| 15.9099       | 2.0    | 76   | 3.5044          | 91.9617 | 36.366  |
| 12.7846       | 3.0    | 114  | 2.8211          | 92.7676 | 36.22   |
| 10.3083       | 4.0    | 152  | 2.3006          | 93.675  | 36.284  |
| 8.4622        | 5.0    | 190  | 1.9316          | 93.6498 | 36.348  |
| 7.3015        | 6.0    | 228  | 1.7263          | 93.9441 | 36.358  |
| 6.8211        | 6.8212 | 259  | 1.6685          | 93.7274 | 36.306  |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0