--- language: - fa license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: whisper_small-fa_v03 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 fa type: mozilla-foundation/common_voice_11_0 config: fa split: test args: fa metrics: - type: wer value: 27.1515 name: Wer --- # whisper_small-fa_v03 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 fa dataset. We also did data augmentation using audiomentations library along with hyperparameter tuning to acquire the best parameters. It achieves the following results on the evaluation set: - Loss: 0.1813 - Wer: 23.1451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure You can Find the notebooks [here](https://github.com/mohammadh128/Persian_ASR). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.15044e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:-------:| | 500 | 1.210100 | 0.439317 | 44.17001| | 1000 | 0.717500 | 0.385981 | 40.53219| | 1500 | 0.585800 | 0.312391 | 35.52059| | 2000 | 0.508400 | 0.274010 | 31.00885| | 2500 | 0.443500 | 0.244815 | 29.79515| | 3000 | 0.392700 | 0.216328 | 27.24362| | 3500 | 0.340100 | 0.213681 | 26.00705| | 4000 | 0.236700 | 0.198893 | 28.51612| | 4500 | 0.212000 | 0.186622 | 25.88944| | 5000 | 0.183800 | 0.181340 | 23.14515| ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.3