moein99 commited on
Commit
cfdf5f7
·
verified ·
1 Parent(s): 435e1ff

End of training

Browse files
Files changed (4) hide show
  1. README.md +369 -0
  2. adapter_config.json +32 -0
  3. adapter_model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - scene_parse_150
8
+ library_name: peft
9
+ model-index:
10
+ - name: ft-mit-b0-with-scene-parse-150-lora
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # ft-mit-b0-with-scene-parse-150-lora
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.2760
22
+ - Mean Iou: 0.0001
23
+ - Mean Accuracy: 0.0003
24
+ - Overall Accuracy: 0.0028
25
+ - Accuracy Wall: nan
26
+ - Accuracy Building: 0.0252
27
+ - Accuracy Sky: 0.0
28
+ - Accuracy Floor: 0.0
29
+ - Accuracy Tree: 0.0
30
+ - Accuracy Ceiling: 0.0
31
+ - Accuracy Road: 0.0
32
+ - Accuracy Bed : 0.0008
33
+ - Accuracy Windowpane: 0.0
34
+ - Accuracy Grass: 0.0
35
+ - Accuracy Cabinet: 0.0
36
+ - Accuracy Sidewalk: 0.0007
37
+ - Accuracy Person: 0.0
38
+ - Accuracy Earth: 0.0
39
+ - Accuracy Door: 0.0
40
+ - Accuracy Table: 0.0
41
+ - Accuracy Mountain: 0.0
42
+ - Accuracy Plant: 0.0
43
+ - Accuracy Curtain: 0.0
44
+ - Accuracy Chair: 0.0
45
+ - Accuracy Car: 0.0
46
+ - Accuracy Water: 0.0
47
+ - Accuracy Painting: 0.0
48
+ - Accuracy Sofa: 0.0
49
+ - Accuracy Shelf: 0.0
50
+ - Accuracy House: nan
51
+ - Accuracy Sea: 0.0
52
+ - Accuracy Mirror: 0.0
53
+ - Accuracy Rug: 0.0
54
+ - Accuracy Field: 0.0
55
+ - Accuracy Armchair: 0.0
56
+ - Accuracy Seat: 0.0
57
+ - Accuracy Fence: 0.0
58
+ - Accuracy Desk: 0.0
59
+ - Accuracy Rock: nan
60
+ - Accuracy Wardrobe: 0.0
61
+ - Accuracy Lamp: 0.0
62
+ - Accuracy Bathtub: 0.0
63
+ - Accuracy Railing: 0.0
64
+ - Accuracy Cushion: 0.0
65
+ - Accuracy Base: 0.0
66
+ - Accuracy Box: 0.0
67
+ - Accuracy Column: 0.0
68
+ - Accuracy Signboard: 0.0
69
+ - Accuracy Chest of drawers: 0.0
70
+ - Accuracy Counter: nan
71
+ - Accuracy Sand: 0.0
72
+ - Accuracy Sink: nan
73
+ - Accuracy Skyscraper: nan
74
+ - Accuracy Fireplace: 0.0
75
+ - Accuracy Refrigerator: 0.0
76
+ - Accuracy Grandstand: 0.0
77
+ - Accuracy Path: 0.0
78
+ - Accuracy Stairs: nan
79
+ - Accuracy Runway: nan
80
+ - Accuracy Case: 0.0
81
+ - Accuracy Pool table: 0.0
82
+ - Accuracy Pillow: 0.0
83
+ - Accuracy Screen door: 0.0
84
+ - Accuracy Stairway: nan
85
+ - Accuracy River: 0.0
86
+ - Accuracy Bridge: 0.0
87
+ - Accuracy Bookcase: nan
88
+ - Accuracy Blind: 0.0
89
+ - Accuracy Coffee table: 0.0
90
+ - Accuracy Toilet: 0.0
91
+ - Accuracy Flower: 0.0
92
+ - Accuracy Book: 0.0
93
+ - Accuracy Hill: 0.0
94
+ - Accuracy Bench: 0.0
95
+ - Accuracy Countertop: 0.0
96
+ - Accuracy Stove: nan
97
+ - Accuracy Palm: nan
98
+ - Accuracy Kitchen island: 0.0
99
+ - Accuracy Computer: nan
100
+ - Accuracy Swivel chair: nan
101
+ - Accuracy Boat: nan
102
+ - Accuracy Bar: 0.0
103
+ - Accuracy Arcade machine: nan
104
+ - Accuracy Hovel: 0.0
105
+ - Accuracy Bus: 0.0
106
+ - Accuracy Towel: 0.0
107
+ - Accuracy Light: 0.0
108
+ - Accuracy Truck: nan
109
+ - Accuracy Tower: nan
110
+ - Accuracy Chandelier: 0.0
111
+ - Accuracy Awning: 0.0
112
+ - Accuracy Streetlight: nan
113
+ - Accuracy Booth: 0.0
114
+ - Accuracy Television receiver: nan
115
+ - Accuracy Airplane: nan
116
+ - Accuracy Dirt track: nan
117
+ - Accuracy Apparel: 0.0
118
+ - Accuracy Pole: nan
119
+ - Accuracy Land: nan
120
+ - Accuracy Bannister: nan
121
+ - Accuracy Escalator: nan
122
+ - Accuracy Ottoman: 0.0
123
+ - Accuracy Bottle: nan
124
+ - Accuracy Buffet: nan
125
+ - Accuracy Poster: 0.0
126
+ - Accuracy Stage: 0.0
127
+ - Accuracy Van: 0.0
128
+ - Accuracy Ship: nan
129
+ - Accuracy Fountain: nan
130
+ - Accuracy Conveyer belt: nan
131
+ - Accuracy Canopy: 0.0
132
+ - Accuracy Washer: 0.0
133
+ - Accuracy Plaything: nan
134
+ - Accuracy Swimming pool: 0.0
135
+ - Accuracy Stool: nan
136
+ - Accuracy Barrel: nan
137
+ - Accuracy Basket: 0.0
138
+ - Accuracy Waterfall: nan
139
+ - Accuracy Tent: 0.0
140
+ - Accuracy Bag: nan
141
+ - Accuracy Minibike: nan
142
+ - Accuracy Cradle: 0.0
143
+ - Accuracy Oven: 0.0
144
+ - Accuracy Ball: 0.0
145
+ - Accuracy Food: nan
146
+ - Accuracy Step: nan
147
+ - Accuracy Tank: 0.0
148
+ - Accuracy Trade name: 0.0
149
+ - Accuracy Microwave: nan
150
+ - Accuracy Pot: nan
151
+ - Accuracy Animal: 0.0
152
+ - Accuracy Bicycle: nan
153
+ - Accuracy Lake: 0.0
154
+ - Accuracy Dishwasher: 0.0
155
+ - Accuracy Screen: 0.0
156
+ - Accuracy Blanket: 0.0
157
+ - Accuracy Sculpture: nan
158
+ - Accuracy Hood: 0.0
159
+ - Accuracy Sconce: 0.0
160
+ - Accuracy Vase: 0.0
161
+ - Accuracy Traffic light: 0.0
162
+ - Accuracy Tray: 0.0
163
+ - Accuracy Ashcan: 0.0
164
+ - Accuracy Fan: nan
165
+ - Accuracy Pier: 0.0
166
+ - Accuracy Crt screen: nan
167
+ - Accuracy Plate: nan
168
+ - Accuracy Monitor: nan
169
+ - Accuracy Bulletin board: nan
170
+ - Accuracy Shower: nan
171
+ - Accuracy Radiator: 0.0
172
+ - Accuracy Glass: nan
173
+ - Accuracy Clock: 0.0
174
+ - Accuracy Flag: nan
175
+ - Iou Wall: 0.0
176
+ - Iou Building: 0.0138
177
+ - Iou Sky: 0.0
178
+ - Iou Floor: 0.0
179
+ - Iou Tree: 0.0
180
+ - Iou Ceiling: 0.0
181
+ - Iou Road: 0.0
182
+ - Iou Bed : 0.0003
183
+ - Iou Windowpane: 0.0
184
+ - Iou Grass: 0.0
185
+ - Iou Cabinet: 0.0
186
+ - Iou Sidewalk: 0.0007
187
+ - Iou Person: 0.0
188
+ - Iou Earth: 0.0
189
+ - Iou Door: 0.0
190
+ - Iou Table: 0.0
191
+ - Iou Mountain: 0.0
192
+ - Iou Plant: 0.0
193
+ - Iou Curtain: 0.0
194
+ - Iou Chair: 0.0
195
+ - Iou Car: 0.0
196
+ - Iou Water: 0.0
197
+ - Iou Painting: 0.0
198
+ - Iou Sofa: 0.0
199
+ - Iou Shelf: 0.0
200
+ - Iou House: nan
201
+ - Iou Sea: 0.0
202
+ - Iou Mirror: 0.0
203
+ - Iou Rug: 0.0
204
+ - Iou Field: 0.0
205
+ - Iou Armchair: 0.0
206
+ - Iou Seat: 0.0
207
+ - Iou Fence: 0.0
208
+ - Iou Desk: 0.0
209
+ - Iou Rock: nan
210
+ - Iou Wardrobe: 0.0
211
+ - Iou Lamp: 0.0
212
+ - Iou Bathtub: 0.0
213
+ - Iou Railing: 0.0
214
+ - Iou Cushion: 0.0
215
+ - Iou Base: 0.0
216
+ - Iou Box: 0.0
217
+ - Iou Column: 0.0
218
+ - Iou Signboard: 0.0
219
+ - Iou Chest of drawers: 0.0
220
+ - Iou Counter: nan
221
+ - Iou Sand: 0.0
222
+ - Iou Sink: nan
223
+ - Iou Skyscraper: nan
224
+ - Iou Fireplace: 0.0
225
+ - Iou Refrigerator: 0.0
226
+ - Iou Grandstand: 0.0
227
+ - Iou Path: 0.0
228
+ - Iou Stairs: nan
229
+ - Iou Runway: nan
230
+ - Iou Case: 0.0
231
+ - Iou Pool table: 0.0
232
+ - Iou Pillow: 0.0
233
+ - Iou Screen door: 0.0
234
+ - Iou Stairway: nan
235
+ - Iou River: 0.0
236
+ - Iou Bridge: 0.0
237
+ - Iou Bookcase: nan
238
+ - Iou Blind: 0.0
239
+ - Iou Coffee table: 0.0
240
+ - Iou Toilet: 0.0
241
+ - Iou Flower: 0.0
242
+ - Iou Book: 0.0
243
+ - Iou Hill: 0.0
244
+ - Iou Bench: 0.0
245
+ - Iou Countertop: 0.0
246
+ - Iou Stove: nan
247
+ - Iou Palm: nan
248
+ - Iou Kitchen island: 0.0
249
+ - Iou Computer: nan
250
+ - Iou Swivel chair: nan
251
+ - Iou Boat: nan
252
+ - Iou Bar: 0.0
253
+ - Iou Arcade machine: nan
254
+ - Iou Hovel: 0.0
255
+ - Iou Bus: 0.0
256
+ - Iou Towel: 0.0
257
+ - Iou Light: 0.0
258
+ - Iou Truck: nan
259
+ - Iou Tower: nan
260
+ - Iou Chandelier: 0.0
261
+ - Iou Awning: 0.0
262
+ - Iou Streetlight: nan
263
+ - Iou Booth: 0.0
264
+ - Iou Television receiver: nan
265
+ - Iou Airplane: nan
266
+ - Iou Dirt track: nan
267
+ - Iou Apparel: 0.0
268
+ - Iou Pole: nan
269
+ - Iou Land: nan
270
+ - Iou Bannister: nan
271
+ - Iou Escalator: nan
272
+ - Iou Ottoman: 0.0
273
+ - Iou Bottle: nan
274
+ - Iou Buffet: nan
275
+ - Iou Poster: 0.0
276
+ - Iou Stage: 0.0
277
+ - Iou Van: 0.0
278
+ - Iou Ship: nan
279
+ - Iou Fountain: nan
280
+ - Iou Conveyer belt: nan
281
+ - Iou Canopy: 0.0
282
+ - Iou Washer: 0.0
283
+ - Iou Plaything: nan
284
+ - Iou Swimming pool: 0.0
285
+ - Iou Stool: nan
286
+ - Iou Barrel: nan
287
+ - Iou Basket: 0.0
288
+ - Iou Waterfall: nan
289
+ - Iou Tent: 0.0
290
+ - Iou Bag: nan
291
+ - Iou Minibike: nan
292
+ - Iou Cradle: 0.0
293
+ - Iou Oven: 0.0
294
+ - Iou Ball: 0.0
295
+ - Iou Food: nan
296
+ - Iou Step: nan
297
+ - Iou Tank: 0.0
298
+ - Iou Trade name: 0.0
299
+ - Iou Microwave: nan
300
+ - Iou Pot: nan
301
+ - Iou Animal: 0.0
302
+ - Iou Bicycle: nan
303
+ - Iou Lake: 0.0
304
+ - Iou Dishwasher: 0.0
305
+ - Iou Screen: 0.0
306
+ - Iou Blanket: 0.0
307
+ - Iou Sculpture: nan
308
+ - Iou Hood: 0.0
309
+ - Iou Sconce: 0.0
310
+ - Iou Vase: 0.0
311
+ - Iou Traffic light: 0.0
312
+ - Iou Tray: 0.0
313
+ - Iou Ashcan: 0.0
314
+ - Iou Fan: nan
315
+ - Iou Pier: 0.0
316
+ - Iou Crt screen: nan
317
+ - Iou Plate: nan
318
+ - Iou Monitor: nan
319
+ - Iou Bulletin board: nan
320
+ - Iou Shower: nan
321
+ - Iou Radiator: 0.0
322
+ - Iou Glass: nan
323
+ - Iou Clock: 0.0
324
+ - Iou Flag: nan
325
+
326
+ ## Model description
327
+
328
+ More information needed
329
+
330
+ ## Intended uses & limitations
331
+
332
+ More information needed
333
+
334
+ ## Training and evaluation data
335
+
336
+ More information needed
337
+
338
+ ## Training procedure
339
+
340
+ ### Training hyperparameters
341
+
342
+ The following hyperparameters were used during training:
343
+ - learning_rate: 0.0005
344
+ - train_batch_size: 16
345
+ - eval_batch_size: 16
346
+ - seed: 42
347
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
348
+ - lr_scheduler_type: linear
349
+ - num_epochs: 5
350
+ - mixed_precision_training: Native AMP
351
+
352
+ ### Training results
353
+
354
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Wall | Accuracy Building | Accuracy Sky | Accuracy Floor | Accuracy Tree | Accuracy Ceiling | Accuracy Road | Accuracy Bed | Accuracy Windowpane | Accuracy Grass | Accuracy Cabinet | Accuracy Sidewalk | Accuracy Person | Accuracy Earth | Accuracy Door | Accuracy Table | Accuracy Mountain | Accuracy Plant | Accuracy Curtain | Accuracy Chair | Accuracy Car | Accuracy Water | Accuracy Painting | Accuracy Sofa | Accuracy Shelf | Accuracy House | Accuracy Sea | Accuracy Mirror | Accuracy Rug | Accuracy Field | Accuracy Armchair | Accuracy Seat | Accuracy Fence | Accuracy Desk | Accuracy Rock | Accuracy Wardrobe | Accuracy Lamp | Accuracy Bathtub | Accuracy Railing | Accuracy Cushion | Accuracy Base | Accuracy Box | Accuracy Column | Accuracy Signboard | Accuracy Chest of drawers | Accuracy Counter | Accuracy Sand | Accuracy Sink | Accuracy Skyscraper | Accuracy Fireplace | Accuracy Refrigerator | Accuracy Grandstand | Accuracy Path | Accuracy Stairs | Accuracy Runway | Accuracy Case | Accuracy Pool table | Accuracy Pillow | Accuracy Screen door | Accuracy Stairway | Accuracy River | Accuracy Bridge | Accuracy Bookcase | Accuracy Blind | Accuracy Coffee table | Accuracy Toilet | Accuracy Flower | Accuracy Book | Accuracy Hill | Accuracy Bench | Accuracy Countertop | Accuracy Stove | Accuracy Palm | Accuracy Kitchen island | Accuracy Computer | Accuracy Swivel chair | Accuracy Boat | Accuracy Bar | Accuracy Arcade machine | Accuracy Hovel | Accuracy Bus | Accuracy Towel | Accuracy Light | Accuracy Truck | Accuracy Tower | Accuracy Chandelier | Accuracy Awning | Accuracy Streetlight | Accuracy Booth | Accuracy Television receiver | Accuracy Airplane | Accuracy Dirt track | Accuracy Apparel | Accuracy Pole | Accuracy Land | Accuracy Bannister | Accuracy Escalator | Accuracy Ottoman | Accuracy Bottle | Accuracy Buffet | Accuracy Poster | Accuracy Stage | Accuracy Van | Accuracy Ship | Accuracy Fountain | Accuracy Conveyer belt | Accuracy Canopy | Accuracy Washer | Accuracy Plaything | Accuracy Swimming pool | Accuracy Stool | Accuracy Barrel | Accuracy Basket | Accuracy Waterfall | Accuracy Tent | Accuracy Bag | Accuracy Minibike | Accuracy Cradle | Accuracy Oven | Accuracy Ball | Accuracy Food | Accuracy Step | Accuracy Tank | Accuracy Trade name | Accuracy Microwave | Accuracy Pot | Accuracy Animal | Accuracy Bicycle | Accuracy Lake | Accuracy Dishwasher | Accuracy Screen | Accuracy Blanket | Accuracy Sculpture | Accuracy Hood | Accuracy Sconce | Accuracy Vase | Accuracy Traffic light | Accuracy Tray | Accuracy Ashcan | Accuracy Fan | Accuracy Pier | Accuracy Crt screen | Accuracy Plate | Accuracy Monitor | Accuracy Bulletin board | Accuracy Shower | Accuracy Radiator | Accuracy Glass | Accuracy Clock | Accuracy Flag | Iou Wall | Iou Building | Iou Sky | Iou Floor | Iou Tree | Iou Ceiling | Iou Road | Iou Bed | Iou Windowpane | Iou Grass | Iou Cabinet | Iou Sidewalk | Iou Person | Iou Earth | Iou Door | Iou Table | Iou Mountain | Iou Plant | Iou Curtain | Iou Chair | Iou Car | Iou Water | Iou Painting | Iou Sofa | Iou Shelf | Iou House | Iou Sea | Iou Mirror | Iou Rug | Iou Field | Iou Armchair | Iou Seat | Iou Fence | Iou Desk | Iou Rock | Iou Wardrobe | Iou Lamp | Iou Bathtub | Iou Railing | Iou Cushion | Iou Base | Iou Box | Iou Column | Iou Signboard | Iou Chest of drawers | Iou Counter | Iou Sand | Iou Sink | Iou Skyscraper | Iou Fireplace | Iou Refrigerator | Iou Grandstand | Iou Path | Iou Stairs | Iou Runway | Iou Case | Iou Pool table | Iou Pillow | Iou Screen door | Iou Stairway | Iou River | Iou Bridge | Iou Bookcase | Iou Blind | Iou Coffee table | Iou Toilet | Iou Flower | Iou Book | Iou Hill | Iou Bench | Iou Countertop | Iou Stove | Iou Palm | Iou Kitchen island | Iou Computer | Iou Swivel chair | Iou Boat | Iou Bar | Iou Arcade machine | Iou Hovel | Iou Bus | Iou Towel | Iou Light | Iou Truck | Iou Tower | Iou Chandelier | Iou Awning | Iou Streetlight | Iou Booth | Iou Television receiver | Iou Airplane | Iou Dirt track | Iou Apparel | Iou Pole | Iou Land | Iou Bannister | Iou Escalator | Iou Ottoman | Iou Bottle | Iou Buffet | Iou Poster | Iou Stage | Iou Van | Iou Ship | Iou Fountain | Iou Conveyer belt | Iou Canopy | Iou Washer | Iou Plaything | Iou Swimming pool | Iou Stool | Iou Barrel | Iou Basket | Iou Waterfall | Iou Tent | Iou Bag | Iou Minibike | Iou Cradle | Iou Oven | Iou Ball | Iou Food | Iou Step | Iou Tank | Iou Trade name | Iou Microwave | Iou Pot | Iou Animal | Iou Bicycle | Iou Lake | Iou Dishwasher | Iou Screen | Iou Blanket | Iou Sculpture | Iou Hood | Iou Sconce | Iou Vase | Iou Traffic light | Iou Tray | Iou Ashcan | Iou Fan | Iou Pier | Iou Crt screen | Iou Plate | Iou Monitor | Iou Bulletin board | Iou Shower | Iou Radiator | Iou Glass | Iou Clock | Iou Flag |
355
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:-----------------:|:------------:|:--------------:|:-------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------:|:---------------:|:--------------:|:-------------:|:--------------:|:-----------------:|:--------------:|:----------------:|:--------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:--------------:|:------------:|:---------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-----------------:|:-------------:|:----------------:|:----------------:|:----------------:|:-------------:|:------------:|:---------------:|:------------------:|:-------------------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:---------------------:|:-------------------:|:-------------:|:---------------:|:---------------:|:-------------:|:-------------------:|:---------------:|:--------------------:|:-----------------:|:--------------:|:---------------:|:-----------------:|:--------------:|:---------------------:|:---------------:|:---------------:|:-------------:|:-------------:|:--------------:|:-------------------:|:--------------:|:-------------:|:-----------------------:|:-----------------:|:---------------------:|:-------------:|:------------:|:-----------------------:|:--------------:|:------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-------------------:|:---------------:|:--------------------:|:--------------:|:----------------------------:|:-----------------:|:-------------------:|:----------------:|:-------------:|:-------------:|:------------------:|:------------------:|:----------------:|:---------------:|:---------------:|:---------------:|:--------------:|:------------:|:-------------:|:-----------------:|:----------------------:|:---------------:|:---------------:|:------------------:|:----------------------:|:--------------:|:---------------:|:---------------:|:------------------:|:-------------:|:------------:|:-----------------:|:---------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:------------:|:---------------:|:----------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:----------------------:|:-------------:|:---------------:|:------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------------:|:---------------:|:-----------------:|:--------------:|:--------------:|:-------------:|:--------:|:------------:|:-------:|:---------:|:--------:|:-----------:|:--------:|:--------:|:--------------:|:---------:|:-----------:|:------------:|:----------:|:---------:|:--------:|:---------:|:------------:|:---------:|:-----------:|:---------:|:-------:|:---------:|:------------:|:--------:|:---------:|:---------:|:-------:|:----------:|:-------:|:---------:|:------------:|:--------:|:---------:|:--------:|:--------:|:------------:|:--------:|:-----------:|:-----------:|:-----------:|:--------:|:-------:|:----------:|:-------------:|:--------------------:|:-----------:|:--------:|:--------:|:--------------:|:-------------:|:----------------:|:--------------:|:--------:|:----------:|:----------:|:--------:|:--------------:|:----------:|:---------------:|:------------:|:---------:|:----------:|:------------:|:---------:|:----------------:|:----------:|:----------:|:--------:|:--------:|:---------:|:--------------:|:---------:|:--------:|:------------------:|:------------:|:----------------:|:--------:|:-------:|:------------------:|:---------:|:-------:|:---------:|:---------:|:---------:|:---------:|:--------------:|:----------:|:---------------:|:---------:|:-----------------------:|:------------:|:--------------:|:-----------:|:--------:|:--------:|:-------------:|:-------------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:-------:|:--------:|:------------:|:-----------------:|:----------:|:----------:|:-------------:|:-----------------:|:---------:|:----------:|:----------:|:-------------:|:--------:|:-------:|:------------:|:----------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------------:|:-------------:|:-------:|:----------:|:-----------:|:--------:|:--------------:|:----------:|:-----------:|:-------------:|:--------:|:----------:|:--------:|:-----------------:|:--------:|:----------:|:-------:|:--------:|:--------------:|:---------:|:-----------:|:------------------:|:----------:|:------------:|:---------:|:---------:|:--------:|
356
+ | 3.0768 | 1.0 | 29 | 3.0142 | 0.0003 | 0.0006 | 0.0063 | nan | 0.0578 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0288 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan |
357
+ | 2.3753 | 2.0 | 58 | 2.5389 | 0.0002 | 0.0003 | 0.0030 | nan | 0.0276 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0158 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan |
358
+ | 2.1067 | 3.0 | 87 | 2.3853 | 0.0002 | 0.0003 | 0.0028 | nan | 0.0254 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0141 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan |
359
+ | 1.9646 | 4.0 | 116 | 2.2850 | 0.0001 | 0.0002 | 0.0023 | nan | 0.0208 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0118 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan |
360
+ | 2.017 | 5.0 | 145 | 2.2760 | 0.0001 | 0.0003 | 0.0028 | nan | 0.0252 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0138 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | 0.0 | nan |
361
+
362
+
363
+ ### Framework versions
364
+
365
+ - PEFT 0.7.1
366
+ - Transformers 4.36.2
367
+ - Pytorch 2.5.1+cu124
368
+ - Datasets 2.15.0
369
+ - Tokenizers 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "SegformerForSemanticSegmentation",
5
+ "parent_library": "transformers.models.segformer.modeling_segformer"
6
+ },
7
+ "base_model_name_or_path": "nvidia/mit-b0",
8
+ "bias": "none",
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_dropout": 0.1,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": [
20
+ "decode_head"
21
+ ],
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "value",
28
+ "query",
29
+ "key"
30
+ ],
31
+ "task_type": null
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7900b84a4e7962b36d077fd92dd1084d081324796f592dbc3e2059ceae6d997e
3
+ size 2137376
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:571c2236cd7886bcc52a60f0ebb68cc5afccd7c9939333900efeafc3c4c5f35b
3
+ size 4792