--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: vit-base-patch16-224-in21k-bridgedefectVIT15 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: accuracy: 0.9573153608536927 - name: F1 type: f1 value: f1: 0.9566147291413047 - name: Precision type: precision value: precision: 0.9591127716274309 - name: Recall type: recall value: recall: 0.9565472623176632 --- # vit-base-patch16-224-in21k-bridgedefectVIT15 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2402 - Accuracy: {'accuracy': 0.9573153608536927} - F1: {'f1': 0.9566147291413047} - Precision: {'precision': 0.9591127716274309} - Recall: {'recall': 0.9565472623176632} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:--------------------------:|:---------------------------------:|:------------------------------:| | 0.3548 | 1.0 | 1780 | 0.2848 | {'accuracy': 0.9118225217635496} | {'f1': 0.912598515170384} | {'precision': 0.913326374297146} | {'recall': 0.9157022464716918} | | 0.1718 | 2.0 | 3560 | 0.3435 | {'accuracy': 0.9005897219882055} | {'f1': 0.9021520907258462} | {'precision': 0.9071588887385811} | {'recall': 0.9088734326741875} | | 0.1956 | 3.0 | 5340 | 0.2290 | {'accuracy': 0.9337264813254704} | {'f1': 0.9345043308561282} | {'precision': 0.9371641968965463} | {'recall': 0.9353444695340449} | | 0.1589 | 4.0 | 7120 | 0.3518 | {'accuracy': 0.925582701488346} | {'f1': 0.9240312800580016} | {'precision': 0.9310407182465765} | {'recall': 0.9241275251443595} | | 0.1076 | 5.0 | 8900 | 0.4017 | {'accuracy': 0.9188430216231396} | {'f1': 0.9170326424426785} | {'precision': 0.923800610078333} | {'recall': 0.9181896594596475} | | 0.0895 | 6.0 | 10680 | 0.2950 | {'accuracy': 0.938219601235608} | {'f1': 0.9380460882172743} | {'precision': 0.9406510771971466} | {'recall': 0.9398150744796098} | | 0.0833 | 7.0 | 12460 | 0.1882 | {'accuracy': 0.9559112608817748} | {'f1': 0.9553785330080078} | {'precision': 0.957564211420095} | {'recall': 0.9550045684543612} | | 0.034 | 8.0 | 14240 | 0.3222 | {'accuracy': 0.9401853411962932} | {'f1': 0.9401162584753809} | {'precision': 0.944463542451817} | {'recall': 0.9410746120960137} | | 0.1117 | 9.0 | 16020 | 0.3084 | {'accuracy': 0.9401853411962932} | {'f1': 0.9389336455514373} | {'precision': 0.945493350000876} | {'recall': 0.9374486305327216} | | 0.2057 | 10.0 | 17800 | 0.3612 | {'accuracy': 0.9348497613030048} | {'f1': 0.9343390020827073} | {'precision': 0.939876035403298} | {'recall': 0.9348316142752356} | | 0.1 | 11.0 | 19580 | 0.2284 | {'accuracy': 0.9553496208930076} | {'f1': 0.9540937018628736} | {'precision': 0.9563364479044711} | {'recall': 0.9537814730817218} | | 0.0531 | 12.0 | 21360 | 0.2393 | {'accuracy': 0.9528222409435552} | {'f1': 0.9517895350619009} | {'precision': 0.955245168398952} | {'recall': 0.9514588091149371} | | 0.0597 | 13.0 | 23140 | 0.2695 | {'accuracy': 0.9519797809604044} | {'f1': 0.9513321647748849} | {'precision': 0.9541412213348108} | {'recall': 0.9515688542696423} | | 0.0482 | 14.0 | 24920 | 0.2403 | {'accuracy': 0.9567537208649256} | {'f1': 0.9560207781245073} | {'precision': 0.9590114685856663} | {'recall': 0.9557731012948057} | | 0.0019 | 15.0 | 26700 | 0.2402 | {'accuracy': 0.9573153608536927} | {'f1': 0.9566147291413047} | {'precision': 0.9591127716274309} | {'recall': 0.9565472623176632} | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0 - Datasets 2.17.1 - Tokenizers 0.15.2