--- license: apache-2.0 base_model: Xrenya/pvt-small-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: pvt-small-224-ConcreteClassifier-PVT results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: accuracy: 0.17665369649805449 - name: F1 type: f1 value: f1: 0.04289493575207861 - name: Precision type: precision value: precision: 0.025236242356864926 - name: Recall type: recall value: recall: 0.14285714285714285 --- # pvt-small-224-ConcreteClassifier-PVT This model is a fine-tuned version of [Xrenya/pvt-small-224](https://huggingface.co/Xrenya/pvt-small-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9419 - Accuracy: {'accuracy': 0.17665369649805449} - F1: {'f1': 0.04289493575207861} - Precision: {'precision': 0.025236242356864926} - Recall: {'recall': 0.14285714285714285} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------:|:---------------------------:|:-----------------------------------:|:-------------------------------:| | 1.981 | 1.0 | 1927 | 1.9584 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.951 | 2.0 | 3854 | 1.9447 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9799 | 3.0 | 5781 | 1.9498 | {'accuracy': 0.13618677042801555} | {'f1': 0.03424657534246575} | {'precision': 0.019455252918287935} | {'recall': 0.14285714285714285} | | 1.9458 | 4.0 | 7708 | 1.9412 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9444 | 5.0 | 9635 | 1.9408 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9441 | 6.0 | 11562 | 1.9427 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9379 | 7.0 | 13489 | 1.9433 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9529 | 8.0 | 15416 | 1.9432 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9305 | 9.0 | 17343 | 1.9463 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.94 | 10.0 | 19270 | 1.9412 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.945 | 11.0 | 21197 | 1.9432 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9294 | 12.0 | 23124 | 1.9444 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9339 | 13.0 | 25051 | 1.9415 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.934 | 14.0 | 26978 | 1.9408 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9275 | 15.0 | 28905 | 1.9423 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9539 | 16.0 | 30832 | 1.9440 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9584 | 17.0 | 32759 | 1.9412 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9409 | 18.0 | 34686 | 1.9405 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9522 | 19.0 | 36613 | 1.9405 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9296 | 20.0 | 38540 | 1.9410 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9272 | 21.0 | 40467 | 1.9412 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9399 | 22.0 | 42394 | 1.9413 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9258 | 23.0 | 44321 | 1.9413 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9481 | 24.0 | 46248 | 1.9422 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.948 | 25.0 | 48175 | 1.9423 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.918 | 26.0 | 50102 | 1.9416 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.938 | 27.0 | 52029 | 1.9414 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9207 | 28.0 | 53956 | 1.9410 | {'accuracy': 0.1556420233463035} | {'f1': 0.03848003848003848} | {'precision': 0.022234574763757644} | {'recall': 0.14285714285714285} | | 1.9472 | 29.0 | 55883 | 1.9404 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | | 1.9355 | 30.0 | 57810 | 1.9419 | {'accuracy': 0.17665369649805449} | {'f1': 0.04289493575207861} | {'precision': 0.025236242356864926} | {'recall': 0.14285714285714285} | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0 - Datasets 2.17.1 - Tokenizers 0.15.2