--- language: en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mlx datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers pipeline_tag: sentence-similarity --- # mlx-community/all-MiniLM-L6-v2-bf16 The Model [mlx-community/all-MiniLM-L6-v2-bf16](https://huggingface.co/mlx-community/all-MiniLM-L6-v2-bf16) was converted to MLX format from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) using mlx-lm version **0.0.3**. ## Use with mlx ```bash pip install mlx-embeddings ``` ```python from mlx_embeddings import load, generate import mlx.core as mx model, tokenizer = load("mlx-community/all-MiniLM-L6-v2-bf16") # For text embeddings output = generate(model, processor, texts=["I like grapes", "I like fruits"]) embeddings = output.text_embeds # Normalized embeddings # Compute dot product between normalized embeddings similarity_matrix = mx.matmul(embeddings, embeddings.T) print("Similarity matrix between texts:") print(similarity_matrix) ```