--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: mdeberta-v3-base-finetuned-french-green-stance results: [] --- # mdeberta-v3-base-finetuned-french-green-stance This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3085 - Accuracy: 0.9533 - F1 Macro: 0.9428 - Accuracy Balanced: 0.9425 - F1 Micro: 0.9533 - Precision Macro: 0.9431 - Recall Macro: 0.9425 - Precision Micro: 0.9533 - Recall Micro: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.3304 | 1.0 | 1393 | 0.4028 | 0.9160 | 0.8984 | 0.9035 | 0.9160 | 0.8937 | 0.9035 | 0.9160 | 0.9160 | | 0.2085 | 2.0 | 2786 | 0.2895 | 0.9440 | 0.9298 | 0.9201 | 0.9440 | 0.9410 | 0.9201 | 0.9440 | 0.9440 | | 0.1368 | 3.0 | 4179 | 0.3136 | 0.9519 | 0.9408 | 0.9384 | 0.9519 | 0.9432 | 0.9384 | 0.9519 | 0.9519 | | 0.0374 | 4.0 | 5572 | 0.3085 | 0.9533 | 0.9428 | 0.9425 | 0.9533 | 0.9431 | 0.9425 | 0.9533 | 0.9533 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0