File size: 2,617 Bytes
3a544dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FRA_party_tweets_climate
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FRA_party_tweets_climate

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0826
- Accuracy: 0.9857
- F1 Macro: 0.9853
- Accuracy Balanced: 0.9847
- F1 Micro: 0.9857
- Precision Macro: 0.9858
- Recall Macro: 0.9847
- Precision Micro: 0.9857
- Recall Micro: 0.9857

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 80
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
| 0.2428        | 1.0   | 628  | 0.0792          | 0.9841   | 0.9836   | 0.9831            | 0.9841   | 0.9842          | 0.9831       | 0.9841          | 0.9841       |
| 0.058         | 2.0   | 1256 | 0.0925          | 0.9809   | 0.9804   | 0.9804            | 0.9809   | 0.9804          | 0.9804       | 0.9809          | 0.9809       |
| 0.0429        | 3.0   | 1884 | 0.0785          | 0.9857   | 0.9852   | 0.9846            | 0.9857   | 0.9859          | 0.9846       | 0.9857          | 0.9857       |
| 0.024         | 4.0   | 2512 | 0.0829          | 0.9857   | 0.9853   | 0.9847            | 0.9857   | 0.9858          | 0.9847       | 0.9857          | 0.9857       |
| 0.0202        | 5.0   | 3140 | 0.0826          | 0.9857   | 0.9853   | 0.9847            | 0.9857   | 0.9858          | 0.9847       | 0.9857          | 0.9857       |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0