File size: 8,239 Bytes
20d737d
 
 
 
 
 
 
 
 
 
 
1ae3557
20d737d
 
 
1ae3557
20d737d
 
 
1ae3557
 
 
 
 
20d737d
 
 
1ae3557
20d737d
 
 
1ae3557
 
 
 
 
20d737d
 
 
1ae3557
20d737d
 
 
1ae3557
 
 
 
 
20d737d
 
 
1ae3557
20d737d
 
 
1ae3557
20d737d
 
 
1ae3557
 
 
 
 
 
 
 
 
 
 
 
20d737d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ae3557
20d737d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: rf_model.pkl
widget:
  structuredData:
    cons_12m:
    - 22353.0
    - 18097.0
    - 1893.0
    cons_last_month:
    - 300.0
    - 0.0
    - 0.0
    contract_length:
    - 2574
    - 2243
    - 2393
    forecast_cons_12m:
    - 1376.530029296875
    - 1810.1199951171875
    - 284.42999267578125
    forecast_cons_year:
    - 0.0
    - 0.0
    - 0.0
    forecast_discount_energy:
    - 0
    - 0
    - 0
    forecast_meter_rent_12m:
    - 0.0
    - 126.66000366210938
    - 19.809999465942383
    forecast_price_pow_off_peak:
    - 44.311378479003906
    - 40.6067008972168
    - 44.311378479003906
    has_gas_t:
    - 0
    - 0
    - 0
    imp_cons:
    - 0.0
    - 0.0
    - 0.0
    margin_gross_pow_ele:
    - 29.5
    - 27.0
    - 9.399999618530273
    nb_prod_act:
    - 1.0
    - 1.0
    - 1.0
    num_years_antig:
    - 6.0
    - 6.0
    - 6.0
    pow_max:
    - 14.300000190734863
    - 18.0
    - 12.5
    price_diff_energy_peak_offpeak:
    - -0.1458740234375
    - -0.016845703125
    - -0.145751953125
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value   |
|--------------------------|---------|
| bootstrap                | True    |
| ccp_alpha                | 0.0     |
| class_weight             |         |
| criterion                | gini    |
| max_depth                |         |
| max_features             | sqrt    |
| max_leaf_nodes           |         |
| max_samples              |         |
| min_impurity_decrease    | 0.0     |
| min_samples_leaf         | 1       |
| min_samples_split        | 2       |
| min_weight_fraction_leaf | 0.0     |
| n_estimators             | 25      |
| n_jobs                   | -1      |
| oob_score                | False   |
| random_state             | 1       |
| verbose                  | 0       |
| warm_start               | False   |

</details>

### Model Plot

The model plot is below.

<style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier(n_estimators=25, n_jobs=-1, random_state=1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" checked><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(n_estimators=25, n_jobs=-1, random_state=1)</pre></div></div></div></div></div>

## Evaluation Results

You can find the details about evaluation process and the evaluation results.

| Metric   |    Value |
|----------|----------|
| accuracy | 0.988057 |
| f1 score | 0.988057 |

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# citation_bibtex

bibtex
@inproceedings{...,year={2023}}

# get_started_code

import pickle 
with open(dtc_pkl_filename, 'rb') as file: 
    clf = pickle.load(file)

# model_card_authors

Marvin Lomo

# limitations

This model is not ready to be used in production.

# model_description

This is a RandomForrestClassifier model trained on SME Churn Dataset.

# eval_method

The model is evaluated using test split, on accuracy and F1 score with macro average.

# confusion_matrix

![confusion_matrix](confusion_matrix.png)