File size: 7,991 Bytes
96ca933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fabd1dc
96ca933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fabd1dc
 
 
96ca933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47472a4
96ca933
 
47472a4
bf3ce6b
96ca933
befb342
96ca933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f368cf
96ca933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f368cf
 
 
 
 
 
 
 
 
 
96ca933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
language:
- en
- fr
- de
- es
- it
- pt
- nl
- hi
license: apache-2.0
library_name: vllm
inference: false
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
pipeline_tag: audio-text-to-text
---
# Voxtral Mini 1.0 (3B) - 2507

Voxtral Mini is an enhancement of [Ministral 3B](https://mistral.ai/news/ministraux), incorporating state-of-the-art audio input capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and audio understanding.

Learn more about Voxtral in our blog post [here](https://mistral.ai/news/voxtral).

## Key Features

Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
- **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
- **Long-form context**: With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
- **Built-in Q&A and summarization**: Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
- **Natively multilingual**: Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
- **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
- **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Ministral-3B

## Benchmark Results

### Audio

Average word error rate (WER) over the FLEURS, Mozilla Common Voice and Multilingual LibriSpeech benchmarks:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64161701107962562e9b1006/puASxtajF1lDeGYPrRK5y.png)

### Text

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5dfcb1aada6d0311fd3d5448/iH9V8JVtMoaGlqJd6FIri.png)

## Usage

The model can be used with the following frameworks;
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)

**Notes**:

- `temperature=0.2` and `top_p=0.95` for chat completion (*e.g. Audio Understanding*) and `temperature=0.0` for transcription
- Multiple audios per message and multiple user turns with audio are supported
- System prompts are not yet supported

### vLLM (recommended)

We recommend using this model with [vLLM](https://github.com/vllm-project/vllm).

#### Installation

Make sure to install vllm from "main", we recommend using `uv`:

```
uv pip install -U "vllm[audio]" --torch-backend=auto --extra-index-url https://wheels.vllm.ai/nightly
```

Doing so should automatically install [`mistral_common >= 1.8.1`](https://github.com/mistralai/mistral-common/releases/tag/v1.8.1).

To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```

#### Offline

You can test that your vLLM setup works as expected by cloning the vLLM repo:

```sh
git clone https://github.com/vllm-project/vllm && cd vllm
```

and then running:

```sh
python examples/offline_inference/audio_language.py --num-audios 2 --model-type voxtral
```

#### Serve

We recommend that you use Voxtral-Small-24B-2507 in a server/client setting. 

1. Spin up a server:

```
vllm serve mistralai/Voxtral-Mini-3B-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral
```

**Note:** Running Voxtral-Mini-3B-2507 on GPU requires ~9.5 GB of GPU RAM in bf16 or fp16. 


2. To ping the client you can use a simple Python snippet. See the following examples.


### Audio Instruct

Leverage the audio capabilities of Voxtral-Mini-3B-2507 to chat.

Make sure that your client has `mistral-common` with audio installed:

```sh
pip install --upgrade mistral_common\[audio\]
```

<details>
  <summary>Python snippet</summary>

```py
from mistral_common.protocol.instruct.messages import TextChunk, AudioChunk, UserMessage, AssistantMessage, RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
bcn_file = hf_hub_download("patrickvonplaten/audio_samples", "bcn_weather.mp3", repo_type="dataset")

def file_to_chunk(file: str) -> AudioChunk:
    audio = Audio.from_file(file, strict=False)
    return AudioChunk.from_audio(audio)

text_chunk = TextChunk(text="Which speaker is more inspiring? Why? How are they different from each other?")
user_msg = UserMessage(content=[file_to_chunk(obama_file), file_to_chunk(bcn_file), text_chunk]).to_openai()

print(30 * "=" + "USER 1" + 30 * "=")
print(text_chunk.text)
print("\n\n")

response = client.chat.completions.create(
    model=model,
    messages=[user_msg],
    temperature=0.2,
    top_p=0.95,
)
content = response.choices[0].message.content

print(30 * "=" + "BOT 1" + 30 * "=")
print(content)
print("\n\n")
# The speaker who is more inspiring is the one who delivered the farewell address, as they express
# gratitude, optimism, and a strong commitment to the nation and its citizens. They emphasize the importance of
# self-government and active citizenship, encouraging everyone to participate in the democratic process. In contrast,
# the other speaker provides a factual update on the weather in Barcelona, which is less inspiring as it
# lacks the emotional and motivational content of the farewell address.

# **Differences:**
# - The farewell address speaker focuses on the values and responsibilities of citizenship, encouraging active participation in democracy.
# - The weather update speaker provides factual information about the temperature in Barcelona, without any emotional or motivational content.


messages = [
    user_msg,
    AssistantMessage(content=content).to_openai(),
    UserMessage(content="Ok, now please summarize the content of the first audio.").to_openai()
]
print(30 * "=" + "USER 2" + 30 * "=")
print(messages[-1]["content"])
print("\n\n")

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=0.2,
    top_p=0.95,
)
content = response.choices[0].message.content
print(30 * "=" + "BOT 2" + 30 * "=")
print(content)
```
</details>

#### Transcription

Voxtral-Mini-3B-2507 has powerful transcription capabilities! 

Make sure that your client has `mistral-common` with audio installed:

```sh
pip install --upgrade mistral_common\[audio\]
```

<details>
  <summary>Python snippet</summary>

```python
from mistral_common.protocol.transcription.request import TranscriptionRequest
from mistral_common.protocol.instruct.messages import RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
audio = Audio.from_file(obama_file, strict=False)

audio = RawAudio.from_audio(audio)
req = TranscriptionRequest(model=model, audio=audio, language="en", temperature=0.0).to_openai(exclude=("top_p", "seed"))

response = client.audio.transcriptions.create(**req)
print(response)
```
</details>