File size: 14,880 Bytes
e3a289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7bda6
e3a289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887d1e7
e3a289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184a0a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a289e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: vllm
inference: false
base_model:
- mistralai/Devstrall-Small-2505
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
pipeline_tag: text2text-generation
---

# Devstral-Small-2505

Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positionates it as the #1 open source model on this [benchmark](#benchmark-results). 

It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed.

For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community.

Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral).


## Key Features:
- **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents.
- **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use.
- **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes.
- **Context Window**: A 128k context window.
- **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size.



## Benchmark Results

### SWE-Bench

Devstral achieves a score of 46.8% on SWE-Bench Verified, outperforming prior open-source SoTA by 6%.

| Model            | Scaffold           | SWE-Bench Verified (%) |
|------------------|--------------------|------------------------|
| Devstral         | OpenHands Scaffold | **46.8**               |
| GPT-4.1-mini     | OpenAI Scaffold    | 23.6                   |
| Claude 3.5 Haiku | Anthropic Scaffold | 40.6                   |
| SWE-smith-LM 32B | SWE-agent Scaffold | 40.2                   |


 When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B.

![SWE Benchmark](assets/swe_bench.png)

## Usage

We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold.
You can use it either through our API or by running locally. 

### API 
Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key.

Then run these commands to start the OpenHands docker container.
```bash
export MISTRAL_API_KEY=<MY_KEY>

docker pull docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik

mkdir -p ~/.openhands-state && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2505","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json

docker run -it --rm --pull=always \
    -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.39-nikolaik \
    -e LOG_ALL_EVENTS=true \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -v ~/.openhands-state:/.openhands-state \
    -p 3000:3000 \
    --add-host host.docker.internal:host-gateway \
    --name openhands-app \
    docker.all-hands.dev/all-hands-ai/openhands:0.39
```

### Local inference 

The model can also be deployed with the following libraries:
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
- [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
- [`LMStudio`](https://lmstudio.ai/): See [here](#lmstudio)
- [`llama.cpp`](https://github.com/ggml-org/llama.cpp): See [here](#llama.cpp)
- [`ollama`](https://github.com/ollama/ollama): See [here](#ollama)


### OpenHands (recommended)

#### Launch a server to deploy Devstral-Small-2505

Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral-Small-2505`.

In the case of the tutorial we spineed up a vLLM server running the command:
```bash
vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2
```

The server address should be in the following format: `http://<your-server-url>:8000/v1`

#### Launch OpenHands

You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation).

The easiest way to launch OpenHands is to use the Docker image:
```bash
docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik

docker run -it --rm --pull=always \
    -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \
    -e LOG_ALL_EVENTS=true \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -v ~/.openhands-state:/.openhands-state \
    -p 3000:3000 \
    --add-host host.docker.internal:host-gateway \
    --name openhands-app \
    docker.all-hands.dev/all-hands-ai/openhands:0.38
```


Then, you can access the OpenHands UI at `http://localhost:3000`.

#### Connect to the server

When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier.

Fill the following fields:
- **Custom Model**: `openai/mistralai/Devstral-Small-2505`
- **Base URL**: `http://<your-server-url>:8000/v1`
- **API Key**: `token` (or any other token you used to launch the server if any)

#### Use OpenHands powered by Devstral

Now you're good to use Devstral Small inside OpenHands by **starting a new conversation**. Let's build a To-Do list app.

<details>
  <summary>To-Do list app</summary

1. Let's ask Devstral to generate the app with the following prompt:

```txt
Build a To-Do list app with the following requirements:
- Built using FastAPI and React.
- Make it a one page app that:
   - Allows to add a task.
   - Allows to delete a task.
   - Allows to mark a task as done.
   - Displays the list of tasks.
- Store the tasks in a SQLite database.
```

![Agent prompting](assets/tuto_open_hands/agent_prompting.png)


2. Let's see the result

You should see the agent construct the app and be able to explore the code it generated.

If it doesn't do it automatically, ask Devstral to deploy the app or do it manually, and then go the front URL deployment to see the app.

![Agent working](assets/tuto_open_hands/agent_working.png)
![App UI](assets/tuto_open_hands/app_ui.png)


3. Iterate

Now that you have a first result you can iterate on it by asking your agent to improve it. For example, in the app generated we could click on a task to mark it checked but having a checkbox would improve UX. You could also ask it to add a feature to edit a task, or to add a feature to filter the tasks by status.

Enjoy building with Devstral Small and OpenHands!

</details>


### vLLM (recommended)

We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.

**_Installation_**

Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/releases/tag/v0.8.5):

```
pip install vllm --upgrade
```

Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5).

To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```

You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).

#### Server

We recommand that you use Devstral in a server/client setting. 

1. Spin up a server:

```
vllm serve mistralai/Devstral-Small-2505 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2
```


2. To ping the client you can use a simple Python snippet.

```py
import requests
import json
from huggingface_hub import hf_hub_download


url = "http://<your-server-url>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}

model = "mistralai/Devstral-Small-2505"

def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt

SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "<your-command>",
            },
        ],
    },
]

data = {"model": model, "messages": messages, "temperature": 0.15}

response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["content"])
```

### Mistral-inference

We recommend using mistral-inference to quickly try out / "vibe-check" Devstral.

#### Install

Make sure to have mistral_inference >= 1.6.0 installed.

```bash
pip install mistral_inference --upgrade
```

#### Download

```python
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Devstral-Small-2505", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```

#### Python

You can run the model using the following command:

```bash
mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300
```

You can then prompt it with anything you'd like.

### Transformers

To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) `    mistral-common >= 1.5.5` to use our tokenizer.

```bash
pip install mistral-common --upgrade
```

Then load our tokenizer along with the model and generate:

```python
import torch

from mistral_common.protocol.instruct.messages import (
    SystemMessage, UserMessage
)
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM

def load_system_prompt(repo_id: str, filename: str) -> str:
    file_path = hf_hub_download(repo_id=repo_id, filename=filename)
    with open(file_path, "r") as file:
        system_prompt = file.read()
    return system_prompt

model_id = "mistralai/Devstral-Small-2505"
tekken_file = hf_hub_download(repo_id=model_id, filename="tekken.json")
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")

tokenizer = MistralTokenizer.from_file(tekken_file)

model = AutoModelForCausalLM.from_pretrained(model_id)

tokenized = tokenizer.encode_chat_completion(
    ChatCompletionRequest(
        messages=[
            SystemMessage(content=SYSTEM_PROMPT),
            UserMessage(content="<your-command>"),
        ],
    )
)

output = model.generate(
    input_ids=torch.tensor([tokenized.tokens]),
    max_new_tokens=1000,
)[0]

decoded_output = tokenizer.decode(output[len(tokenized.tokens):])
print(decoded_output)
```

### LMStudio
Download the weights from huggingface:

```
pip install -U "huggingface_hub[cli]"
huggingface-cli download \
"mistralai/Devstral-Small-2505_gguf" \
--include "devstralQ4_K_M.gguf" \
--local-dir "mistralai/Devstral-Small-2505_gguf/"
```

You can serve the model locally with [LMStudio](https://lmstudio.ai/).
* Download [LM Studio](https://lmstudio.ai/) and install it
* Install `lms cli ~/.lmstudio/bin/lms bootstrap`
* In a bash terminal, run `lms import devstralQ4_K_M.gguf` in the directory where you've downloaded the model checkpoint (e.g. `mistralai/Devstral-Small-2505_gguf`)
* Open the LMStudio application, click the terminal icon to get into the developer tab. Click select a model to load and select Devstral Q4 K M. Toggle the status button to start the model, in setting toggle Serve on Local Network to be on.
* On the right tab, you will see an API identifier which should be devstralq4_k_m and an api address under API Usage. Keep note of this address, we will use it in the next step.

Launch Openhands
You can now interact with the model served from LM Studio with openhands. Start the openhands server with the docker

```bash
docker pull docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik
docker run -it --rm --pull=always \
	-e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.38-nikolaik \
	-e LOG_ALL_EVENTS=true \
	-v /var/run/docker.sock:/var/run/docker.sock \
	-v ~/.openhands-state:/.openhands-state \
	-p 3000:3000 \
	--add-host host.docker.internal:host-gateway \
	--name openhands-app \
	docker.all-hands.dev/all-hands-ai/openhands:0.38
```

Click “see advanced setting” on the second line. 
In the new tab, toggle advanced to on. Set the custom model to be mistral/devstralq4_k_m and Base URL the api address we get from the last step in LM Studio. Set API Key to dummy. Click save changes.

### llama.cpp

Download the weights from huggingface:

```
pip install -U "huggingface_hub[cli]"
huggingface-cli download \
"mistralai/Devstral-Small-2505_gguf" \
--include "devstralQ4_K_M.gguf" \
--local-dir "mistralai/Devstral-Small-2505_gguf/"
```

Then run Devstral using the llama.cpp CLI.

```bash
./llama-cli -m Devstral-Small-2505_gguf/devstralQ4_K_M.gguf -cnv
```

### Ollama

You can run Devstral using the [Ollama](https://ollama.ai/) CLI.

```bash
ollama run devstral
```