Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +41 -0
- chat_template.jinja +8 -0
- config.json +27 -0
- configuration_midashenglm.py +33 -0
- merges.txt +0 -0
- model.safetensors.index.json +843 -0
- modeling_midashenglm.py +878 -0
- preprocessor_config.json +13 -0
- processing.py +277 -0
- processing_midashenglm.py +277 -0
- processor_config.json +10 -0
- special_tokens_map.json +144 -0
- tokenizer.json +3 -0
- tokenizer_config.json +365 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|AUDIO|>": 151646,
|
| 5 |
+
"<|IMAGE|>": 151655,
|
| 6 |
+
"<|VIDEO|>": 151656,
|
| 7 |
+
"<|ar|>": 151679,
|
| 8 |
+
"<|audio_bos|>": 151647,
|
| 9 |
+
"<|audio_eos|>": 151648,
|
| 10 |
+
"<|box_end|>": 151649,
|
| 11 |
+
"<|de|>": 151667,
|
| 12 |
+
"<|endoftext|>": 151643,
|
| 13 |
+
"<|en|>": 151665,
|
| 14 |
+
"<|es|>": 151668,
|
| 15 |
+
"<|file_sep|>": 151664,
|
| 16 |
+
"<|fim_middle|>": 151660,
|
| 17 |
+
"<|fim_pad|>": 151662,
|
| 18 |
+
"<|fim_prefix|>": 151659,
|
| 19 |
+
"<|fim_suffix|>": 151661,
|
| 20 |
+
"<|fr|>": 151669,
|
| 21 |
+
"<|hi|>": 151670,
|
| 22 |
+
"<|id|>": 151676,
|
| 23 |
+
"<|im_end|>": 151645,
|
| 24 |
+
"<|im_start|>": 151644,
|
| 25 |
+
"<|it|>": 151678,
|
| 26 |
+
"<|jp|>": 151680,
|
| 27 |
+
"<|kr|>": 151666,
|
| 28 |
+
"<|nl|>": 151674,
|
| 29 |
+
"<|pt|>": 151675,
|
| 30 |
+
"<|quad_end|>": 151651,
|
| 31 |
+
"<|quad_start|>": 151650,
|
| 32 |
+
"<|repo_name|>": 151663,
|
| 33 |
+
"<|ru|>": 151677,
|
| 34 |
+
"<|th|>": 151672,
|
| 35 |
+
"<|uk|>": 151671,
|
| 36 |
+
"<|unknown|>": 151681,
|
| 37 |
+
"<|vision_bos|>": 151652,
|
| 38 |
+
"<|vision_eos|>": 151653,
|
| 39 |
+
"<|vision_pad|>": 151654,
|
| 40 |
+
"<|vi|>": 151673
|
| 41 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% set audio_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
|
| 2 |
+
You are a helpful assistant.<|im_end|>
|
| 3 |
+
{% endif %}<|im_start|>{{ message['role'] }}
|
| 4 |
+
{% if message['content'] is string %}{{ message['content'] }}<|im_end|>
|
| 5 |
+
{% else %}{% for content in message['content'] %}{% if 'audio' in content or 'audio_url' in content or message['type'] == 'audio' %}{% set audio_count.value = audio_count.value + 1 %}Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>
|
| 6 |
+
{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
|
| 7 |
+
{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
|
| 8 |
+
{% endif %}
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DashengQwen25OmniModelInstruct"
|
| 4 |
+
],
|
| 5 |
+
"audio_encoder": "LemonstoreWrapper",
|
| 6 |
+
"audio_encoder_args": {
|
| 7 |
+
"model_name": "audiotransformer_huge.dasheng06b.10s",
|
| 8 |
+
"pretrained": false,
|
| 9 |
+
"target_length": 1008
|
| 10 |
+
},
|
| 11 |
+
"auto_map": {
|
| 12 |
+
"AutoConfig": "configuration_midashenglm.MiAudioLLMHFConfig",
|
| 13 |
+
"AutoModelForCausalLM": "modeling_midashenglm.DashengQwen25OmniModelInstruct"
|
| 14 |
+
},
|
| 15 |
+
"freeze": null,
|
| 16 |
+
"gradient_checkpoint_decoder": false,
|
| 17 |
+
"lora": null,
|
| 18 |
+
"model": "DashengQwen25OmniModelInstruct",
|
| 19 |
+
"model_type": "miaudiollm",
|
| 20 |
+
"resize_tokenizer": false,
|
| 21 |
+
"subsample_factor": 5,
|
| 22 |
+
"text_model": "Qwen/Qwen2.5-Omni-3B",
|
| 23 |
+
"text_model_args": {},
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.52.0.dev0",
|
| 26 |
+
"use_encoderattention_mask": true
|
| 27 |
+
}
|
configuration_midashenglm.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class MiAudioLLMHFConfig(PretrainedConfig):
|
| 7 |
+
model_type = "miaudiollm"
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
model: str = "DashengQwen2ModelInstruct",
|
| 12 |
+
audio_encoder="LemonstoreWrapper",
|
| 13 |
+
audio_encoder_args=dict(
|
| 14 |
+
model_name="audiotransformer_base.dasheng.10s", pretrained=True
|
| 15 |
+
),
|
| 16 |
+
text_model="Qwen/Qwen2.5-0.5B-Instruct",
|
| 17 |
+
text_model_args=dict(),
|
| 18 |
+
freeze: Literal["audio", "text"] | str | None = None,
|
| 19 |
+
lora: Literal["encoder", "decoder"] | None = None,
|
| 20 |
+
subsample_factor: int = 5,
|
| 21 |
+
use_encoderattention_mask: bool = True,
|
| 22 |
+
**kwargs,
|
| 23 |
+
):
|
| 24 |
+
self.model = model
|
| 25 |
+
self.audio_encoder = audio_encoder
|
| 26 |
+
self.audio_encoder_args = audio_encoder_args
|
| 27 |
+
self.text_model = text_model
|
| 28 |
+
self.text_model_args = text_model_args
|
| 29 |
+
self.freeze = freeze
|
| 30 |
+
self.lora = lora
|
| 31 |
+
self.subsample_factor = subsample_factor
|
| 32 |
+
self.use_encoderattention_mask = use_encoderattention_mask
|
| 33 |
+
super().__init__(**kwargs)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 9383791884
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"audio_encoder.model.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 7 |
+
"audio_encoder.model.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"audio_encoder.model.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 9 |
+
"audio_encoder.model.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"audio_encoder.model.blocks.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 11 |
+
"audio_encoder.model.blocks.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"audio_encoder.model.blocks.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"audio_encoder.model.blocks.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"audio_encoder.model.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
|
| 15 |
+
"audio_encoder.model.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"audio_encoder.model.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
|
| 17 |
+
"audio_encoder.model.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"audio_encoder.model.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 19 |
+
"audio_encoder.model.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"audio_encoder.model.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 21 |
+
"audio_encoder.model.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"audio_encoder.model.blocks.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 23 |
+
"audio_encoder.model.blocks.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"audio_encoder.model.blocks.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"audio_encoder.model.blocks.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"audio_encoder.model.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
|
| 27 |
+
"audio_encoder.model.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"audio_encoder.model.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
|
| 29 |
+
"audio_encoder.model.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"audio_encoder.model.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 31 |
+
"audio_encoder.model.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"audio_encoder.model.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 33 |
+
"audio_encoder.model.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"audio_encoder.model.blocks.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 35 |
+
"audio_encoder.model.blocks.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"audio_encoder.model.blocks.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 37 |
+
"audio_encoder.model.blocks.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"audio_encoder.model.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
|
| 39 |
+
"audio_encoder.model.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"audio_encoder.model.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
|
| 41 |
+
"audio_encoder.model.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"audio_encoder.model.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 43 |
+
"audio_encoder.model.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"audio_encoder.model.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 45 |
+
"audio_encoder.model.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"audio_encoder.model.blocks.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 47 |
+
"audio_encoder.model.blocks.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"audio_encoder.model.blocks.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"audio_encoder.model.blocks.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"audio_encoder.model.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
|
| 51 |
+
"audio_encoder.model.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"audio_encoder.model.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
|
| 53 |
+
"audio_encoder.model.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"audio_encoder.model.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 55 |
+
"audio_encoder.model.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"audio_encoder.model.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 57 |
+
"audio_encoder.model.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"audio_encoder.model.blocks.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 59 |
+
"audio_encoder.model.blocks.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"audio_encoder.model.blocks.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"audio_encoder.model.blocks.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"audio_encoder.model.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
|
| 63 |
+
"audio_encoder.model.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"audio_encoder.model.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
|
| 65 |
+
"audio_encoder.model.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"audio_encoder.model.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 67 |
+
"audio_encoder.model.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"audio_encoder.model.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 69 |
+
"audio_encoder.model.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"audio_encoder.model.blocks.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 71 |
+
"audio_encoder.model.blocks.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"audio_encoder.model.blocks.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"audio_encoder.model.blocks.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"audio_encoder.model.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
|
| 75 |
+
"audio_encoder.model.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"audio_encoder.model.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
|
| 77 |
+
"audio_encoder.model.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"audio_encoder.model.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 79 |
+
"audio_encoder.model.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"audio_encoder.model.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 81 |
+
"audio_encoder.model.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"audio_encoder.model.blocks.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 83 |
+
"audio_encoder.model.blocks.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"audio_encoder.model.blocks.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"audio_encoder.model.blocks.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"audio_encoder.model.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
|
| 87 |
+
"audio_encoder.model.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"audio_encoder.model.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
|
| 89 |
+
"audio_encoder.model.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"audio_encoder.model.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 91 |
+
"audio_encoder.model.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"audio_encoder.model.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 93 |
+
"audio_encoder.model.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"audio_encoder.model.blocks.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 95 |
+
"audio_encoder.model.blocks.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"audio_encoder.model.blocks.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"audio_encoder.model.blocks.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"audio_encoder.model.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
|
| 99 |
+
"audio_encoder.model.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"audio_encoder.model.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
|
| 101 |
+
"audio_encoder.model.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"audio_encoder.model.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 103 |
+
"audio_encoder.model.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"audio_encoder.model.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 105 |
+
"audio_encoder.model.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"audio_encoder.model.blocks.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 107 |
+
"audio_encoder.model.blocks.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"audio_encoder.model.blocks.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"audio_encoder.model.blocks.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"audio_encoder.model.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
|
| 111 |
+
"audio_encoder.model.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"audio_encoder.model.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
|
| 113 |
+
"audio_encoder.model.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"audio_encoder.model.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 115 |
+
"audio_encoder.model.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"audio_encoder.model.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 117 |
+
"audio_encoder.model.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"audio_encoder.model.blocks.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 119 |
+
"audio_encoder.model.blocks.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"audio_encoder.model.blocks.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"audio_encoder.model.blocks.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"audio_encoder.model.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
|
| 123 |
+
"audio_encoder.model.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"audio_encoder.model.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
|
| 125 |
+
"audio_encoder.model.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"audio_encoder.model.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 127 |
+
"audio_encoder.model.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"audio_encoder.model.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 129 |
+
"audio_encoder.model.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"audio_encoder.model.blocks.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 131 |
+
"audio_encoder.model.blocks.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"audio_encoder.model.blocks.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"audio_encoder.model.blocks.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"audio_encoder.model.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
|
| 135 |
+
"audio_encoder.model.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"audio_encoder.model.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
|
| 137 |
+
"audio_encoder.model.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"audio_encoder.model.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 139 |
+
"audio_encoder.model.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"audio_encoder.model.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 141 |
+
"audio_encoder.model.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"audio_encoder.model.blocks.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 143 |
+
"audio_encoder.model.blocks.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"audio_encoder.model.blocks.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 145 |
+
"audio_encoder.model.blocks.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"audio_encoder.model.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
|
| 147 |
+
"audio_encoder.model.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"audio_encoder.model.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
|
| 149 |
+
"audio_encoder.model.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"audio_encoder.model.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 151 |
+
"audio_encoder.model.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"audio_encoder.model.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 153 |
+
"audio_encoder.model.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"audio_encoder.model.blocks.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 155 |
+
"audio_encoder.model.blocks.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"audio_encoder.model.blocks.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"audio_encoder.model.blocks.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"audio_encoder.model.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
|
| 159 |
+
"audio_encoder.model.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"audio_encoder.model.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
|
| 161 |
+
"audio_encoder.model.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"audio_encoder.model.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 163 |
+
"audio_encoder.model.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"audio_encoder.model.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 165 |
+
"audio_encoder.model.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"audio_encoder.model.blocks.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 167 |
+
"audio_encoder.model.blocks.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"audio_encoder.model.blocks.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 169 |
+
"audio_encoder.model.blocks.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"audio_encoder.model.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
|
| 171 |
+
"audio_encoder.model.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"audio_encoder.model.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
|
| 173 |
+
"audio_encoder.model.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"audio_encoder.model.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 175 |
+
"audio_encoder.model.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"audio_encoder.model.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 177 |
+
"audio_encoder.model.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"audio_encoder.model.blocks.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 179 |
+
"audio_encoder.model.blocks.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"audio_encoder.model.blocks.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 181 |
+
"audio_encoder.model.blocks.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"audio_encoder.model.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
|
| 183 |
+
"audio_encoder.model.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"audio_encoder.model.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
|
| 185 |
+
"audio_encoder.model.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"audio_encoder.model.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 187 |
+
"audio_encoder.model.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"audio_encoder.model.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 189 |
+
"audio_encoder.model.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"audio_encoder.model.blocks.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 191 |
+
"audio_encoder.model.blocks.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"audio_encoder.model.blocks.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 193 |
+
"audio_encoder.model.blocks.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"audio_encoder.model.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
|
| 195 |
+
"audio_encoder.model.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"audio_encoder.model.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
|
| 197 |
+
"audio_encoder.model.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"audio_encoder.model.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 199 |
+
"audio_encoder.model.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"audio_encoder.model.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 201 |
+
"audio_encoder.model.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"audio_encoder.model.blocks.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 203 |
+
"audio_encoder.model.blocks.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"audio_encoder.model.blocks.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 205 |
+
"audio_encoder.model.blocks.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"audio_encoder.model.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
|
| 207 |
+
"audio_encoder.model.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"audio_encoder.model.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
|
| 209 |
+
"audio_encoder.model.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"audio_encoder.model.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 211 |
+
"audio_encoder.model.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"audio_encoder.model.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 213 |
+
"audio_encoder.model.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"audio_encoder.model.blocks.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 215 |
+
"audio_encoder.model.blocks.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"audio_encoder.model.blocks.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 217 |
+
"audio_encoder.model.blocks.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"audio_encoder.model.blocks.24.norm1.bias": "model-00001-of-00002.safetensors",
|
| 219 |
+
"audio_encoder.model.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"audio_encoder.model.blocks.24.norm2.bias": "model-00001-of-00002.safetensors",
|
| 221 |
+
"audio_encoder.model.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"audio_encoder.model.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 223 |
+
"audio_encoder.model.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"audio_encoder.model.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 225 |
+
"audio_encoder.model.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"audio_encoder.model.blocks.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 227 |
+
"audio_encoder.model.blocks.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"audio_encoder.model.blocks.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 229 |
+
"audio_encoder.model.blocks.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"audio_encoder.model.blocks.25.norm1.bias": "model-00001-of-00002.safetensors",
|
| 231 |
+
"audio_encoder.model.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"audio_encoder.model.blocks.25.norm2.bias": "model-00001-of-00002.safetensors",
|
| 233 |
+
"audio_encoder.model.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"audio_encoder.model.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 235 |
+
"audio_encoder.model.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"audio_encoder.model.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 237 |
+
"audio_encoder.model.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"audio_encoder.model.blocks.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 239 |
+
"audio_encoder.model.blocks.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"audio_encoder.model.blocks.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 241 |
+
"audio_encoder.model.blocks.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 242 |
+
"audio_encoder.model.blocks.26.norm1.bias": "model-00001-of-00002.safetensors",
|
| 243 |
+
"audio_encoder.model.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"audio_encoder.model.blocks.26.norm2.bias": "model-00001-of-00002.safetensors",
|
| 245 |
+
"audio_encoder.model.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"audio_encoder.model.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 247 |
+
"audio_encoder.model.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"audio_encoder.model.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 249 |
+
"audio_encoder.model.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"audio_encoder.model.blocks.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 251 |
+
"audio_encoder.model.blocks.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"audio_encoder.model.blocks.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 253 |
+
"audio_encoder.model.blocks.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"audio_encoder.model.blocks.27.norm1.bias": "model-00001-of-00002.safetensors",
|
| 255 |
+
"audio_encoder.model.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"audio_encoder.model.blocks.27.norm2.bias": "model-00001-of-00002.safetensors",
|
| 257 |
+
"audio_encoder.model.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"audio_encoder.model.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 259 |
+
"audio_encoder.model.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"audio_encoder.model.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 261 |
+
"audio_encoder.model.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"audio_encoder.model.blocks.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 263 |
+
"audio_encoder.model.blocks.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"audio_encoder.model.blocks.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"audio_encoder.model.blocks.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"audio_encoder.model.blocks.28.norm1.bias": "model-00001-of-00002.safetensors",
|
| 267 |
+
"audio_encoder.model.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"audio_encoder.model.blocks.28.norm2.bias": "model-00001-of-00002.safetensors",
|
| 269 |
+
"audio_encoder.model.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"audio_encoder.model.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 271 |
+
"audio_encoder.model.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"audio_encoder.model.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 273 |
+
"audio_encoder.model.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"audio_encoder.model.blocks.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 275 |
+
"audio_encoder.model.blocks.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"audio_encoder.model.blocks.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 277 |
+
"audio_encoder.model.blocks.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"audio_encoder.model.blocks.29.norm1.bias": "model-00001-of-00002.safetensors",
|
| 279 |
+
"audio_encoder.model.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"audio_encoder.model.blocks.29.norm2.bias": "model-00001-of-00002.safetensors",
|
| 281 |
+
"audio_encoder.model.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
|
| 282 |
+
"audio_encoder.model.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 283 |
+
"audio_encoder.model.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"audio_encoder.model.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 285 |
+
"audio_encoder.model.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"audio_encoder.model.blocks.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 287 |
+
"audio_encoder.model.blocks.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"audio_encoder.model.blocks.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"audio_encoder.model.blocks.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"audio_encoder.model.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
|
| 291 |
+
"audio_encoder.model.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"audio_encoder.model.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
|
| 293 |
+
"audio_encoder.model.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"audio_encoder.model.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 295 |
+
"audio_encoder.model.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"audio_encoder.model.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 297 |
+
"audio_encoder.model.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 298 |
+
"audio_encoder.model.blocks.30.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 299 |
+
"audio_encoder.model.blocks.30.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"audio_encoder.model.blocks.30.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 301 |
+
"audio_encoder.model.blocks.30.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 302 |
+
"audio_encoder.model.blocks.30.norm1.bias": "model-00001-of-00002.safetensors",
|
| 303 |
+
"audio_encoder.model.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
|
| 304 |
+
"audio_encoder.model.blocks.30.norm2.bias": "model-00001-of-00002.safetensors",
|
| 305 |
+
"audio_encoder.model.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
|
| 306 |
+
"audio_encoder.model.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 307 |
+
"audio_encoder.model.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"audio_encoder.model.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 309 |
+
"audio_encoder.model.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"audio_encoder.model.blocks.31.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 311 |
+
"audio_encoder.model.blocks.31.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"audio_encoder.model.blocks.31.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 313 |
+
"audio_encoder.model.blocks.31.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"audio_encoder.model.blocks.31.norm1.bias": "model-00001-of-00002.safetensors",
|
| 315 |
+
"audio_encoder.model.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"audio_encoder.model.blocks.31.norm2.bias": "model-00001-of-00002.safetensors",
|
| 317 |
+
"audio_encoder.model.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"audio_encoder.model.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 319 |
+
"audio_encoder.model.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"audio_encoder.model.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 321 |
+
"audio_encoder.model.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"audio_encoder.model.blocks.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 323 |
+
"audio_encoder.model.blocks.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"audio_encoder.model.blocks.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 325 |
+
"audio_encoder.model.blocks.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"audio_encoder.model.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
|
| 327 |
+
"audio_encoder.model.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"audio_encoder.model.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
|
| 329 |
+
"audio_encoder.model.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
|
| 330 |
+
"audio_encoder.model.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 331 |
+
"audio_encoder.model.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"audio_encoder.model.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 333 |
+
"audio_encoder.model.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"audio_encoder.model.blocks.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 335 |
+
"audio_encoder.model.blocks.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"audio_encoder.model.blocks.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 337 |
+
"audio_encoder.model.blocks.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 338 |
+
"audio_encoder.model.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
|
| 339 |
+
"audio_encoder.model.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"audio_encoder.model.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
|
| 341 |
+
"audio_encoder.model.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"audio_encoder.model.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 343 |
+
"audio_encoder.model.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"audio_encoder.model.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 345 |
+
"audio_encoder.model.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"audio_encoder.model.blocks.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 347 |
+
"audio_encoder.model.blocks.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"audio_encoder.model.blocks.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 349 |
+
"audio_encoder.model.blocks.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"audio_encoder.model.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
|
| 351 |
+
"audio_encoder.model.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"audio_encoder.model.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
|
| 353 |
+
"audio_encoder.model.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"audio_encoder.model.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 355 |
+
"audio_encoder.model.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"audio_encoder.model.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 357 |
+
"audio_encoder.model.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"audio_encoder.model.blocks.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 359 |
+
"audio_encoder.model.blocks.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"audio_encoder.model.blocks.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 361 |
+
"audio_encoder.model.blocks.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"audio_encoder.model.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
|
| 363 |
+
"audio_encoder.model.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"audio_encoder.model.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
|
| 365 |
+
"audio_encoder.model.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"audio_encoder.model.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 367 |
+
"audio_encoder.model.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"audio_encoder.model.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 369 |
+
"audio_encoder.model.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"audio_encoder.model.blocks.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 371 |
+
"audio_encoder.model.blocks.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"audio_encoder.model.blocks.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 373 |
+
"audio_encoder.model.blocks.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"audio_encoder.model.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
|
| 375 |
+
"audio_encoder.model.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"audio_encoder.model.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
|
| 377 |
+
"audio_encoder.model.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"audio_encoder.model.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 379 |
+
"audio_encoder.model.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"audio_encoder.model.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 381 |
+
"audio_encoder.model.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"audio_encoder.model.blocks.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 383 |
+
"audio_encoder.model.blocks.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"audio_encoder.model.blocks.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 385 |
+
"audio_encoder.model.blocks.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"audio_encoder.model.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
|
| 387 |
+
"audio_encoder.model.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"audio_encoder.model.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
|
| 389 |
+
"audio_encoder.model.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"audio_encoder.model.freq_pos_embed": "model-00001-of-00002.safetensors",
|
| 391 |
+
"audio_encoder.model.front_end.0.mel_scale.fb": "model-00001-of-00002.safetensors",
|
| 392 |
+
"audio_encoder.model.front_end.0.spectrogram.window": "model-00001-of-00002.safetensors",
|
| 393 |
+
"audio_encoder.model.init_bn.1.bias": "model-00001-of-00002.safetensors",
|
| 394 |
+
"audio_encoder.model.init_bn.1.num_batches_tracked": "model-00001-of-00002.safetensors",
|
| 395 |
+
"audio_encoder.model.init_bn.1.running_mean": "model-00001-of-00002.safetensors",
|
| 396 |
+
"audio_encoder.model.init_bn.1.running_var": "model-00001-of-00002.safetensors",
|
| 397 |
+
"audio_encoder.model.init_bn.1.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"audio_encoder.model.norm.bias": "model-00001-of-00002.safetensors",
|
| 399 |
+
"audio_encoder.model.norm.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"audio_encoder.model.patch_embed.proj.bias": "model-00001-of-00002.safetensors",
|
| 401 |
+
"audio_encoder.model.patch_embed.proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"audio_encoder.model.time_pos_embed": "model-00001-of-00002.safetensors",
|
| 403 |
+
"audio_projector.net.0.bias": "model-00002-of-00002.safetensors",
|
| 404 |
+
"audio_projector.net.0.weight": "model-00002-of-00002.safetensors",
|
| 405 |
+
"audio_projector.net.2.bias": "model-00002-of-00002.safetensors",
|
| 406 |
+
"audio_projector.net.2.weight": "model-00002-of-00002.safetensors",
|
| 407 |
+
"decoder.lm_head.weight": "model-00002-of-00002.safetensors",
|
| 408 |
+
"decoder.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"decoder.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"decoder.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"decoder.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"decoder.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"decoder.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"decoder.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 415 |
+
"decoder.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"decoder.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"decoder.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 418 |
+
"decoder.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"decoder.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 420 |
+
"decoder.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"decoder.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"decoder.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"decoder.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"decoder.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"decoder.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"decoder.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 427 |
+
"decoder.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"decoder.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"decoder.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 430 |
+
"decoder.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"decoder.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 432 |
+
"decoder.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"decoder.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"decoder.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"decoder.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"decoder.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"decoder.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"decoder.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 439 |
+
"decoder.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"decoder.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 441 |
+
"decoder.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 442 |
+
"decoder.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 443 |
+
"decoder.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 444 |
+
"decoder.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 445 |
+
"decoder.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"decoder.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 447 |
+
"decoder.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"decoder.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 449 |
+
"decoder.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"decoder.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 451 |
+
"decoder.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"decoder.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 453 |
+
"decoder.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 454 |
+
"decoder.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 455 |
+
"decoder.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 456 |
+
"decoder.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 457 |
+
"decoder.model.layers.12.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 458 |
+
"decoder.model.layers.12.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 459 |
+
"decoder.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 460 |
+
"decoder.model.layers.12.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 461 |
+
"decoder.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 462 |
+
"decoder.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 463 |
+
"decoder.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 464 |
+
"decoder.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 465 |
+
"decoder.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 466 |
+
"decoder.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 467 |
+
"decoder.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 468 |
+
"decoder.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 469 |
+
"decoder.model.layers.13.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 470 |
+
"decoder.model.layers.13.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 471 |
+
"decoder.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 472 |
+
"decoder.model.layers.13.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 473 |
+
"decoder.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 474 |
+
"decoder.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 475 |
+
"decoder.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 476 |
+
"decoder.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 477 |
+
"decoder.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 478 |
+
"decoder.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 479 |
+
"decoder.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 480 |
+
"decoder.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 481 |
+
"decoder.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 482 |
+
"decoder.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 483 |
+
"decoder.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 484 |
+
"decoder.model.layers.14.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 485 |
+
"decoder.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 486 |
+
"decoder.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 487 |
+
"decoder.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 488 |
+
"decoder.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 489 |
+
"decoder.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 490 |
+
"decoder.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 491 |
+
"decoder.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 492 |
+
"decoder.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 493 |
+
"decoder.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 494 |
+
"decoder.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 495 |
+
"decoder.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 496 |
+
"decoder.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 497 |
+
"decoder.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 498 |
+
"decoder.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 499 |
+
"decoder.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 500 |
+
"decoder.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 501 |
+
"decoder.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 502 |
+
"decoder.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 503 |
+
"decoder.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 504 |
+
"decoder.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 505 |
+
"decoder.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 506 |
+
"decoder.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 507 |
+
"decoder.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 508 |
+
"decoder.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 509 |
+
"decoder.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 510 |
+
"decoder.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 511 |
+
"decoder.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 512 |
+
"decoder.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 513 |
+
"decoder.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 514 |
+
"decoder.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 515 |
+
"decoder.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 516 |
+
"decoder.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 517 |
+
"decoder.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 518 |
+
"decoder.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 519 |
+
"decoder.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 520 |
+
"decoder.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 521 |
+
"decoder.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 522 |
+
"decoder.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 523 |
+
"decoder.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 524 |
+
"decoder.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 525 |
+
"decoder.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 526 |
+
"decoder.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 527 |
+
"decoder.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 528 |
+
"decoder.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 529 |
+
"decoder.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 530 |
+
"decoder.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 531 |
+
"decoder.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 532 |
+
"decoder.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 533 |
+
"decoder.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 534 |
+
"decoder.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 535 |
+
"decoder.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 536 |
+
"decoder.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 537 |
+
"decoder.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 538 |
+
"decoder.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 539 |
+
"decoder.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 540 |
+
"decoder.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 541 |
+
"decoder.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 542 |
+
"decoder.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 543 |
+
"decoder.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 544 |
+
"decoder.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 545 |
+
"decoder.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 546 |
+
"decoder.model.layers.19.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 547 |
+
"decoder.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 548 |
+
"decoder.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 549 |
+
"decoder.model.layers.19.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 550 |
+
"decoder.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 551 |
+
"decoder.model.layers.19.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 552 |
+
"decoder.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 553 |
+
"decoder.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 554 |
+
"decoder.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 555 |
+
"decoder.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"decoder.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 557 |
+
"decoder.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 558 |
+
"decoder.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 559 |
+
"decoder.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 560 |
+
"decoder.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 561 |
+
"decoder.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 562 |
+
"decoder.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 563 |
+
"decoder.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 564 |
+
"decoder.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 565 |
+
"decoder.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 566 |
+
"decoder.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 567 |
+
"decoder.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 568 |
+
"decoder.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 569 |
+
"decoder.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 570 |
+
"decoder.model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 571 |
+
"decoder.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 572 |
+
"decoder.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 573 |
+
"decoder.model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 574 |
+
"decoder.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 575 |
+
"decoder.model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 576 |
+
"decoder.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 577 |
+
"decoder.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 578 |
+
"decoder.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 579 |
+
"decoder.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 580 |
+
"decoder.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 581 |
+
"decoder.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 582 |
+
"decoder.model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 583 |
+
"decoder.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 584 |
+
"decoder.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 585 |
+
"decoder.model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 586 |
+
"decoder.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 587 |
+
"decoder.model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 588 |
+
"decoder.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 589 |
+
"decoder.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 590 |
+
"decoder.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 591 |
+
"decoder.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 592 |
+
"decoder.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 593 |
+
"decoder.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 594 |
+
"decoder.model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 595 |
+
"decoder.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 596 |
+
"decoder.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 597 |
+
"decoder.model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 598 |
+
"decoder.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 599 |
+
"decoder.model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 600 |
+
"decoder.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 601 |
+
"decoder.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 602 |
+
"decoder.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 603 |
+
"decoder.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 604 |
+
"decoder.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 605 |
+
"decoder.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 606 |
+
"decoder.model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 607 |
+
"decoder.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 608 |
+
"decoder.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 609 |
+
"decoder.model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 610 |
+
"decoder.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 611 |
+
"decoder.model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 612 |
+
"decoder.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 613 |
+
"decoder.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 614 |
+
"decoder.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 615 |
+
"decoder.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 616 |
+
"decoder.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 617 |
+
"decoder.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 618 |
+
"decoder.model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 619 |
+
"decoder.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 620 |
+
"decoder.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 621 |
+
"decoder.model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 622 |
+
"decoder.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 623 |
+
"decoder.model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 624 |
+
"decoder.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 625 |
+
"decoder.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 626 |
+
"decoder.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 627 |
+
"decoder.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 628 |
+
"decoder.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 629 |
+
"decoder.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 630 |
+
"decoder.model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 631 |
+
"decoder.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 632 |
+
"decoder.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 633 |
+
"decoder.model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 634 |
+
"decoder.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 635 |
+
"decoder.model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 636 |
+
"decoder.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 637 |
+
"decoder.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 638 |
+
"decoder.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 639 |
+
"decoder.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 640 |
+
"decoder.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 641 |
+
"decoder.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 642 |
+
"decoder.model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 643 |
+
"decoder.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 644 |
+
"decoder.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 645 |
+
"decoder.model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 646 |
+
"decoder.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 647 |
+
"decoder.model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 648 |
+
"decoder.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 649 |
+
"decoder.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 650 |
+
"decoder.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 651 |
+
"decoder.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 652 |
+
"decoder.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 653 |
+
"decoder.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 654 |
+
"decoder.model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 655 |
+
"decoder.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 656 |
+
"decoder.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 657 |
+
"decoder.model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 658 |
+
"decoder.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 659 |
+
"decoder.model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 660 |
+
"decoder.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 661 |
+
"decoder.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 662 |
+
"decoder.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 663 |
+
"decoder.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 664 |
+
"decoder.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 665 |
+
"decoder.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 666 |
+
"decoder.model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 667 |
+
"decoder.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 668 |
+
"decoder.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 669 |
+
"decoder.model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 670 |
+
"decoder.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 671 |
+
"decoder.model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 672 |
+
"decoder.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 673 |
+
"decoder.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 674 |
+
"decoder.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 675 |
+
"decoder.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 676 |
+
"decoder.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 677 |
+
"decoder.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 678 |
+
"decoder.model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 679 |
+
"decoder.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 680 |
+
"decoder.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 681 |
+
"decoder.model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 682 |
+
"decoder.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 683 |
+
"decoder.model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 684 |
+
"decoder.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 685 |
+
"decoder.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"decoder.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 687 |
+
"decoder.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"decoder.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 689 |
+
"decoder.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 690 |
+
"decoder.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 691 |
+
"decoder.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 692 |
+
"decoder.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 693 |
+
"decoder.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 694 |
+
"decoder.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 695 |
+
"decoder.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 696 |
+
"decoder.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 697 |
+
"decoder.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 698 |
+
"decoder.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 699 |
+
"decoder.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 700 |
+
"decoder.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 701 |
+
"decoder.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 702 |
+
"decoder.model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 703 |
+
"decoder.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 704 |
+
"decoder.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 705 |
+
"decoder.model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 706 |
+
"decoder.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 707 |
+
"decoder.model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 708 |
+
"decoder.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 709 |
+
"decoder.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 710 |
+
"decoder.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 711 |
+
"decoder.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 712 |
+
"decoder.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 713 |
+
"decoder.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 714 |
+
"decoder.model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 715 |
+
"decoder.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 716 |
+
"decoder.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 717 |
+
"decoder.model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 718 |
+
"decoder.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 719 |
+
"decoder.model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 720 |
+
"decoder.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 721 |
+
"decoder.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 722 |
+
"decoder.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 723 |
+
"decoder.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 724 |
+
"decoder.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 725 |
+
"decoder.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 726 |
+
"decoder.model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 727 |
+
"decoder.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 728 |
+
"decoder.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 729 |
+
"decoder.model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 730 |
+
"decoder.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 731 |
+
"decoder.model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 732 |
+
"decoder.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 733 |
+
"decoder.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 734 |
+
"decoder.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 735 |
+
"decoder.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 736 |
+
"decoder.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 737 |
+
"decoder.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 738 |
+
"decoder.model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 739 |
+
"decoder.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 740 |
+
"decoder.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 741 |
+
"decoder.model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 742 |
+
"decoder.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 743 |
+
"decoder.model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 744 |
+
"decoder.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 745 |
+
"decoder.model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 746 |
+
"decoder.model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 747 |
+
"decoder.model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 748 |
+
"decoder.model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 749 |
+
"decoder.model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 750 |
+
"decoder.model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 751 |
+
"decoder.model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 752 |
+
"decoder.model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 753 |
+
"decoder.model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 754 |
+
"decoder.model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 755 |
+
"decoder.model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 756 |
+
"decoder.model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 757 |
+
"decoder.model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 758 |
+
"decoder.model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 759 |
+
"decoder.model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 760 |
+
"decoder.model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 761 |
+
"decoder.model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 762 |
+
"decoder.model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 763 |
+
"decoder.model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 764 |
+
"decoder.model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 765 |
+
"decoder.model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 766 |
+
"decoder.model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 767 |
+
"decoder.model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 768 |
+
"decoder.model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 769 |
+
"decoder.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 770 |
+
"decoder.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 771 |
+
"decoder.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 772 |
+
"decoder.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 773 |
+
"decoder.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 774 |
+
"decoder.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 775 |
+
"decoder.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 776 |
+
"decoder.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 777 |
+
"decoder.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 778 |
+
"decoder.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 779 |
+
"decoder.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 780 |
+
"decoder.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 781 |
+
"decoder.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 782 |
+
"decoder.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 783 |
+
"decoder.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 784 |
+
"decoder.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 785 |
+
"decoder.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 786 |
+
"decoder.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 787 |
+
"decoder.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 788 |
+
"decoder.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 789 |
+
"decoder.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 790 |
+
"decoder.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 791 |
+
"decoder.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 792 |
+
"decoder.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 793 |
+
"decoder.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 794 |
+
"decoder.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 795 |
+
"decoder.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 796 |
+
"decoder.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 797 |
+
"decoder.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 798 |
+
"decoder.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 799 |
+
"decoder.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 800 |
+
"decoder.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 801 |
+
"decoder.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 802 |
+
"decoder.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 803 |
+
"decoder.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 804 |
+
"decoder.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 805 |
+
"decoder.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 806 |
+
"decoder.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 807 |
+
"decoder.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 808 |
+
"decoder.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 809 |
+
"decoder.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 810 |
+
"decoder.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 811 |
+
"decoder.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 812 |
+
"decoder.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 813 |
+
"decoder.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 814 |
+
"decoder.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 815 |
+
"decoder.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 816 |
+
"decoder.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 817 |
+
"decoder.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 818 |
+
"decoder.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 819 |
+
"decoder.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 820 |
+
"decoder.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 821 |
+
"decoder.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 822 |
+
"decoder.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 823 |
+
"decoder.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 824 |
+
"decoder.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 825 |
+
"decoder.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 826 |
+
"decoder.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 827 |
+
"decoder.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 828 |
+
"decoder.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 829 |
+
"decoder.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 830 |
+
"decoder.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 831 |
+
"decoder.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 832 |
+
"decoder.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 833 |
+
"decoder.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 834 |
+
"decoder.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 835 |
+
"decoder.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 836 |
+
"decoder.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 837 |
+
"decoder.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 838 |
+
"decoder.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 839 |
+
"decoder.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 840 |
+
"decoder.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 841 |
+
"decoder.model.norm.weight": "model-00002-of-00002.safetensors"
|
| 842 |
+
}
|
| 843 |
+
}
|
modeling_midashenglm.py
ADDED
|
@@ -0,0 +1,878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import collections.abc
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Callable, Iterable, Literal, Optional, Tuple, Type, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torchaudio.transforms as audio_transforms
|
| 8 |
+
from peft import LoraConfig, TaskType, get_peft_model
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
from transformers import PreTrainedModel
|
| 11 |
+
|
| 12 |
+
from .configuration_midashenglm import MiAudioLLMHFConfig
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class AudioProjectorSubsample(torch.nn.Module):
|
| 16 |
+
def __init__(self, in_dim: int, out_dim: int, downsample_rate=5):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.k = downsample_rate
|
| 19 |
+
self.net = torch.nn.Sequential(
|
| 20 |
+
torch.nn.Linear(in_dim * self.k, out_dim),
|
| 21 |
+
torch.nn.GELU(),
|
| 22 |
+
torch.nn.Linear(out_dim, out_dim),
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
def forward(self, x, mask=None):
|
| 26 |
+
"""
|
| 27 |
+
inputs is the output of audio encoder.
|
| 28 |
+
:param x: [B, T, D]
|
| 29 |
+
:param x_lens: [B, T]
|
| 30 |
+
:return: [B, T', D']
|
| 31 |
+
"""
|
| 32 |
+
batch_size, seq_len, dim = x.shape
|
| 33 |
+
num_frames_to_discard = seq_len % self.k
|
| 34 |
+
if num_frames_to_discard > 0:
|
| 35 |
+
x = x[:, :-num_frames_to_discard, :]
|
| 36 |
+
if mask is not None:
|
| 37 |
+
mask = mask[:, :-num_frames_to_discard]
|
| 38 |
+
if mask is None:
|
| 39 |
+
mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
|
| 40 |
+
x = x.reshape(
|
| 41 |
+
batch_size, -1, self.k * dim
|
| 42 |
+
) # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
|
| 43 |
+
x = self.net(x)
|
| 44 |
+
mask = mask.reshape(
|
| 45 |
+
batch_size, -1, self.k
|
| 46 |
+
) # rearrange(mask, "b (s k) -> b s k", k=self.k)
|
| 47 |
+
mask = mask.any(dim=-1).long()
|
| 48 |
+
return x, mask
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# The functions `drop_path` and the module `DropPath` are taken from timm
|
| 52 |
+
def drop_path(
|
| 53 |
+
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
| 54 |
+
):
|
| 55 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 56 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 57 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 58 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 59 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 60 |
+
'survival rate' as the argument.
|
| 61 |
+
"""
|
| 62 |
+
if drop_prob == 0.0 or not training:
|
| 63 |
+
return x
|
| 64 |
+
keep_prob = 1 - drop_prob
|
| 65 |
+
shape = (x.shape[0],) + (1,) * (
|
| 66 |
+
x.ndim - 1
|
| 67 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
| 68 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 69 |
+
if keep_prob > 0.0 and scale_by_keep:
|
| 70 |
+
random_tensor.div_(keep_prob)
|
| 71 |
+
return x * random_tensor
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class DropPath(nn.Module):
|
| 75 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 76 |
+
|
| 77 |
+
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
|
| 78 |
+
super(DropPath, self).__init__()
|
| 79 |
+
self.drop_prob = drop_prob
|
| 80 |
+
self.scale_by_keep = scale_by_keep
|
| 81 |
+
|
| 82 |
+
def forward(self, x):
|
| 83 |
+
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
| 84 |
+
|
| 85 |
+
def extra_repr(self):
|
| 86 |
+
return f"drop_prob={round(self.drop_prob, 3):0.3f}"
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def to_2tuple(x: Any) -> Tuple[Any, Any]:
|
| 90 |
+
if isinstance(x, collections.abc.Iterable):
|
| 91 |
+
return x
|
| 92 |
+
return (x, x)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class AudioPatchEmbed(nn.Module):
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
input_size: Union[int, Tuple[int, int]] = 64,
|
| 99 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 100 |
+
patch_stride: Union[int, Tuple[int, int]] = 16,
|
| 101 |
+
in_chans: int = 1,
|
| 102 |
+
embed_dim: int = 768,
|
| 103 |
+
norm_layer: Optional[Callable] = None,
|
| 104 |
+
flatten: bool = False,
|
| 105 |
+
):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.input_size = to_2tuple(input_size)
|
| 108 |
+
self.patch_size = to_2tuple(patch_size)
|
| 109 |
+
self.patch_stride = to_2tuple(patch_stride)
|
| 110 |
+
self.grid_size = (
|
| 111 |
+
self.input_size[0] // self.patch_stride[0],
|
| 112 |
+
self.input_size[1] // self.patch_stride[1],
|
| 113 |
+
)
|
| 114 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
| 115 |
+
self.flatten = flatten
|
| 116 |
+
|
| 117 |
+
self.proj = nn.Conv2d(
|
| 118 |
+
in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride
|
| 119 |
+
)
|
| 120 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 121 |
+
|
| 122 |
+
def forward(self, x):
|
| 123 |
+
x = self.proj(x)
|
| 124 |
+
if self.flatten:
|
| 125 |
+
x = torch.permute(
|
| 126 |
+
torch.flatten(x, 2, 3), (0, 2, 1)
|
| 127 |
+
) # rearrange(x, "b c f t -> b (f t) c")
|
| 128 |
+
x = self.norm(x)
|
| 129 |
+
return x
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class LayerScale(nn.Module):
|
| 133 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.inplace = inplace
|
| 136 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 137 |
+
|
| 138 |
+
def forward(self, x):
|
| 139 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class Mlp(nn.Module):
|
| 143 |
+
def __init__(
|
| 144 |
+
self,
|
| 145 |
+
in_features: int,
|
| 146 |
+
hidden_features: Optional[int] = None,
|
| 147 |
+
out_features: Optional[int] = None,
|
| 148 |
+
act_layer: Type[torch.nn.Module] = nn.GELU,
|
| 149 |
+
drop: float = 0.0,
|
| 150 |
+
):
|
| 151 |
+
super().__init__()
|
| 152 |
+
out_features = out_features or in_features
|
| 153 |
+
hidden_features = hidden_features or in_features
|
| 154 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 155 |
+
self.act = act_layer()
|
| 156 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 157 |
+
self.drop = nn.Dropout(drop)
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
x = self.fc1(x)
|
| 161 |
+
x = self.act(x)
|
| 162 |
+
x = self.drop(x)
|
| 163 |
+
x = self.fc2(x)
|
| 164 |
+
x = self.drop(x)
|
| 165 |
+
return x
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class Attention(nn.Module):
|
| 169 |
+
def __init__(
|
| 170 |
+
self,
|
| 171 |
+
dim: int,
|
| 172 |
+
num_heads: int = 8,
|
| 173 |
+
qkv_bias: bool = False,
|
| 174 |
+
attn_drop: float = 0.0,
|
| 175 |
+
proj_drop: float = 0.0,
|
| 176 |
+
causal: bool = False,
|
| 177 |
+
):
|
| 178 |
+
super().__init__()
|
| 179 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
| 180 |
+
self.num_heads = num_heads
|
| 181 |
+
head_dim = dim // num_heads
|
| 182 |
+
self.scale = head_dim**-0.5
|
| 183 |
+
|
| 184 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 185 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 186 |
+
self.proj = nn.Linear(dim, dim)
|
| 187 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 188 |
+
self.causal = causal
|
| 189 |
+
|
| 190 |
+
def forward(self, x, mask: Optional[torch.Tensor] = None):
|
| 191 |
+
B, N, C = x.shape
|
| 192 |
+
qkv = (
|
| 193 |
+
self.qkv(x)
|
| 194 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 195 |
+
.permute(2, 0, 3, 1, 4)
|
| 196 |
+
)
|
| 197 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
| 198 |
+
|
| 199 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 200 |
+
# if mask is not None:
|
| 201 |
+
# # Mask is a tensor of shape [B, T, T]
|
| 202 |
+
# # Different from self.causal == True, the mask might be something like:
|
| 203 |
+
# # [False, False, True]
|
| 204 |
+
# # [False, False, True]
|
| 205 |
+
# # [True, True, True]
|
| 206 |
+
# # We use -inf to pad here, since if we would pad by any number, the entries at rows only containing
|
| 207 |
+
# # [True, True, True] would lead to weights such as: [0.33,0.33,0.33], which is not correct
|
| 208 |
+
if self.causal:
|
| 209 |
+
mask_value = -torch.finfo(attn.dtype).max
|
| 210 |
+
i, j = attn.shape[-2:]
|
| 211 |
+
mask = torch.ones(i, j, device=q.device, dtype=torch.bool).triu(j - i + 1)
|
| 212 |
+
attn = attn.masked_fill(mask, mask_value)
|
| 213 |
+
if mask is not None:
|
| 214 |
+
# mask value as the lowest possible value in fp32
|
| 215 |
+
mask_value = torch.finfo(attn.dtype).min
|
| 216 |
+
# Mask is of shape [1, SRC_LEN]
|
| 217 |
+
attn_mask = mask[:, None, None, :].expand(B, 1, N, N)
|
| 218 |
+
# Mask should be of shape
|
| 219 |
+
# [B,1,Target_len, Source_len]
|
| 220 |
+
attn = attn.masked_fill(attn_mask, mask_value)
|
| 221 |
+
attn = attn.softmax(dim=-1)
|
| 222 |
+
attn = torch.nan_to_num(attn)
|
| 223 |
+
# Only for the case that a mask with all True entries on a row is passed.
|
| 224 |
+
# attn = torch.nan_to_num(attn)
|
| 225 |
+
attn = self.attn_drop(attn)
|
| 226 |
+
|
| 227 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 228 |
+
x = self.proj(x)
|
| 229 |
+
x = self.proj_drop(x)
|
| 230 |
+
return x
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class Block(nn.Module):
|
| 234 |
+
def __init__(
|
| 235 |
+
self,
|
| 236 |
+
dim: int,
|
| 237 |
+
num_heads: int,
|
| 238 |
+
mlp_ratio: float = 4.0,
|
| 239 |
+
qkv_bias: bool = False,
|
| 240 |
+
drop: float = 0.0,
|
| 241 |
+
attn_drop: float = 0.0,
|
| 242 |
+
init_values=None,
|
| 243 |
+
drop_path: float = 0.0,
|
| 244 |
+
act_layer: Type[torch.nn.Module] = nn.GELU,
|
| 245 |
+
norm_layer: Type[torch.nn.Module] = nn.LayerNorm,
|
| 246 |
+
attention_type: Type[torch.nn.Module] = Attention,
|
| 247 |
+
):
|
| 248 |
+
super().__init__()
|
| 249 |
+
self.norm1 = norm_layer(dim)
|
| 250 |
+
self.attn = attention_type(
|
| 251 |
+
dim,
|
| 252 |
+
num_heads=num_heads,
|
| 253 |
+
qkv_bias=qkv_bias,
|
| 254 |
+
attn_drop=attn_drop,
|
| 255 |
+
proj_drop=drop,
|
| 256 |
+
)
|
| 257 |
+
self.ls1 = (
|
| 258 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 259 |
+
)
|
| 260 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 261 |
+
|
| 262 |
+
self.norm2 = norm_layer(dim)
|
| 263 |
+
self.mlp = Mlp(
|
| 264 |
+
in_features=dim,
|
| 265 |
+
hidden_features=int(dim * mlp_ratio),
|
| 266 |
+
act_layer=act_layer,
|
| 267 |
+
drop=drop,
|
| 268 |
+
)
|
| 269 |
+
self.ls2 = (
|
| 270 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 271 |
+
)
|
| 272 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 273 |
+
|
| 274 |
+
# Kwargs usually has a mask parameter that is passed to Attention
|
| 275 |
+
def forward(self, x, **kwargs):
|
| 276 |
+
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), **kwargs)))
|
| 277 |
+
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
| 278 |
+
return x
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class RearranceReplace(nn.Module):
|
| 282 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 283 |
+
# rearrange(x, "b c f t -> b f c t")
|
| 284 |
+
# or
|
| 285 |
+
# rearrange(x, "b f c t -> b c f t")
|
| 286 |
+
return torch.permute(x, (0, 2, 1, 3))
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class AudioTransformer(nn.Module):
|
| 290 |
+
def __init__(
|
| 291 |
+
self,
|
| 292 |
+
outputdim: int = 527,
|
| 293 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 294 |
+
patch_stride: Union[int, Tuple[int, int]] = 16,
|
| 295 |
+
embed_dim: int = 768,
|
| 296 |
+
depth: int = 12,
|
| 297 |
+
num_heads: int = 12,
|
| 298 |
+
mlp_ratio: float = 4.0,
|
| 299 |
+
qkv_bias: bool = True,
|
| 300 |
+
drop_rate: float = 0.0,
|
| 301 |
+
attn_drop_rate: float = 0.0,
|
| 302 |
+
drop_path_rate: float = 0.0,
|
| 303 |
+
norm_layer: torch.nn.Module | None = None,
|
| 304 |
+
act_layer: Type[torch.nn.Module] = nn.GELU,
|
| 305 |
+
init_values=None,
|
| 306 |
+
target_length: int = 1012,
|
| 307 |
+
input_channels: int = 1,
|
| 308 |
+
pooling: Literal["mean", "token", "dm", "logit", "cat"] | None = "token",
|
| 309 |
+
time_patch_out: float | None = None,
|
| 310 |
+
freq_patch_out: float | None = None,
|
| 311 |
+
block_type: Type[torch.nn.Module] = Block,
|
| 312 |
+
attention_type: Type[torch.nn.Module] = Attention,
|
| 313 |
+
eval_avg: Literal["mean", "max", "cat"] = "mean",
|
| 314 |
+
n_mels: int = 64,
|
| 315 |
+
n_fft: int = 512,
|
| 316 |
+
hop_size: int = 160,
|
| 317 |
+
win_size: int = 512,
|
| 318 |
+
f_min: float = 0.0,
|
| 319 |
+
f_max: float = 8000.0,
|
| 320 |
+
sample_rate: int = 16000,
|
| 321 |
+
center: bool = True,
|
| 322 |
+
pad_last: bool = True,
|
| 323 |
+
):
|
| 324 |
+
super().__init__()
|
| 325 |
+
assert pooling in ("mean", "token", "dm", "logit", "cat", None)
|
| 326 |
+
self.outputdim = outputdim
|
| 327 |
+
self.pooling = pooling
|
| 328 |
+
self.embed_dim = embed_dim
|
| 329 |
+
self.patch_stride = patch_stride
|
| 330 |
+
self.patch_size = patch_size
|
| 331 |
+
self.n_mels = n_mels
|
| 332 |
+
self.n_fft = n_fft
|
| 333 |
+
self.hop_size = hop_size
|
| 334 |
+
self.win_size = win_size
|
| 335 |
+
self.f_min = f_min
|
| 336 |
+
self.f_max = f_max
|
| 337 |
+
self.sample_rate = sample_rate
|
| 338 |
+
self.center = center
|
| 339 |
+
self.pad_last = pad_last
|
| 340 |
+
self.input_channels = input_channels
|
| 341 |
+
self.eval_avg = eval_avg
|
| 342 |
+
self.time_patch_out = time_patch_out
|
| 343 |
+
self.freq_patch_out = freq_patch_out
|
| 344 |
+
|
| 345 |
+
self.front_end = nn.Sequential(
|
| 346 |
+
audio_transforms.MelSpectrogram(
|
| 347 |
+
f_min=self.f_min,
|
| 348 |
+
f_max=self.f_max,
|
| 349 |
+
center=self.center,
|
| 350 |
+
win_length=self.win_size,
|
| 351 |
+
hop_length=self.hop_size,
|
| 352 |
+
sample_rate=self.sample_rate,
|
| 353 |
+
n_fft=self.n_fft,
|
| 354 |
+
n_mels=self.n_mels,
|
| 355 |
+
),
|
| 356 |
+
audio_transforms.AmplitudeToDB(top_db=120),
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
self.init_bn = nn.Sequential(
|
| 360 |
+
# Rearrange("b c f t -> b f c t"),
|
| 361 |
+
RearranceReplace(),
|
| 362 |
+
torch.nn.BatchNorm2d(self.n_mels, momentum=0.01),
|
| 363 |
+
# Rearrange("b f c t -> b c f t"),
|
| 364 |
+
RearranceReplace(),
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
self.target_length = target_length
|
| 368 |
+
|
| 369 |
+
patch_stride = to_2tuple(self.patch_stride)[-1]
|
| 370 |
+
# Allowed length in number of frames, otherwise the positional embedding will throw an error
|
| 371 |
+
self.maximal_allowed_length = self.target_length
|
| 372 |
+
|
| 373 |
+
self.patch_embed = AudioPatchEmbed(
|
| 374 |
+
input_size=(self.n_mels, target_length),
|
| 375 |
+
embed_dim=self.embed_dim,
|
| 376 |
+
in_chans=self.input_channels,
|
| 377 |
+
patch_size=self.patch_size,
|
| 378 |
+
flatten=False,
|
| 379 |
+
patch_stride=self.patch_stride,
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
if self.pooling == "token":
|
| 383 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 384 |
+
self.token_pos_embed = nn.Parameter(torch.randn(1, embed_dim) * 0.02)
|
| 385 |
+
|
| 386 |
+
self.time_pos_embed = nn.Parameter(
|
| 387 |
+
torch.randn(1, embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02
|
| 388 |
+
)
|
| 389 |
+
self.freq_pos_embed = nn.Parameter(
|
| 390 |
+
torch.randn(1, embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
| 394 |
+
act_layer = act_layer or nn.GELU
|
| 395 |
+
dpr = [
|
| 396 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
| 397 |
+
] # stochastic depth decay rule
|
| 398 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 399 |
+
self.blocks = nn.ModuleList(
|
| 400 |
+
block_type(
|
| 401 |
+
dim=embed_dim,
|
| 402 |
+
num_heads=num_heads,
|
| 403 |
+
mlp_ratio=mlp_ratio,
|
| 404 |
+
qkv_bias=qkv_bias,
|
| 405 |
+
init_values=init_values,
|
| 406 |
+
drop=drop_rate,
|
| 407 |
+
attn_drop=attn_drop_rate,
|
| 408 |
+
drop_path=dpr[i],
|
| 409 |
+
norm_layer=norm_layer,
|
| 410 |
+
act_layer=act_layer,
|
| 411 |
+
attention_type=attention_type,
|
| 412 |
+
)
|
| 413 |
+
for i in range(depth)
|
| 414 |
+
)
|
| 415 |
+
self.norm = norm_layer(embed_dim)
|
| 416 |
+
if hasattr(self, "cls_token") and self.cls_token is not None:
|
| 417 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
| 418 |
+
|
| 419 |
+
def forward_features(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 420 |
+
t = x.shape[-1]
|
| 421 |
+
x = x + self.time_pos_embed[:, :, :, :t]
|
| 422 |
+
x = (
|
| 423 |
+
x + self.freq_pos_embed[:, :, :, :]
|
| 424 |
+
) # Just to support __getitem__ in posembed
|
| 425 |
+
x = torch.permute(
|
| 426 |
+
torch.flatten(x, 2, 3), (0, 2, 1)
|
| 427 |
+
) # rearrange(x, "b c f t -> b (f t) c")
|
| 428 |
+
if self.pooling == "token":
|
| 429 |
+
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
| 430 |
+
cls_token = cls_token + self.token_pos_embed
|
| 431 |
+
x = torch.cat((cls_token, x), dim=1)
|
| 432 |
+
x = self.pos_drop(x)
|
| 433 |
+
for block in self.blocks:
|
| 434 |
+
x = block(x, **kwargs)
|
| 435 |
+
x = self.norm(x)
|
| 436 |
+
return x
|
| 437 |
+
|
| 438 |
+
# TODO
|
| 439 |
+
# ================ 从此行开始,与Dasheng代码严重分歧 ================
|
| 440 |
+
|
| 441 |
+
def forward_head(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
| 442 |
+
mask = kwargs.get("mask", None)
|
| 443 |
+
if self.pooling == "token":
|
| 444 |
+
x = x[:, 0]
|
| 445 |
+
return x.sigmoid()
|
| 446 |
+
elif self.pooling == "mean":
|
| 447 |
+
if mask is not None:
|
| 448 |
+
m = (1.0 - mask.float()).unsqueeze(-1) # 1.0 means is masked
|
| 449 |
+
x = torch.nan_to_num((x * m).sum(1) / m.sum(1))
|
| 450 |
+
else:
|
| 451 |
+
x = x.mean(1)
|
| 452 |
+
return x.sigmoid()
|
| 453 |
+
elif self.pooling == "logit":
|
| 454 |
+
if mask is not None:
|
| 455 |
+
m = (1.0 - mask.float()).unsqueeze(-1) # 1.0 means is masked
|
| 456 |
+
x = torch.nan_to_num((x * m).sum(1) / m.sum(1))
|
| 457 |
+
else:
|
| 458 |
+
x = x.mean(1)
|
| 459 |
+
return x
|
| 460 |
+
elif self.pooling == "dm":
|
| 461 |
+
# Unpack using the frequency dimension, which is constant
|
| 462 |
+
b, _, d = x.shape
|
| 463 |
+
x = x.reshape(
|
| 464 |
+
b, -1, self.patch_embed.grid_size[0], d
|
| 465 |
+
) # rearrange(x, "b (f t) d -> b f t d")
|
| 466 |
+
# First poolin frequency, then sigmoid the (B T D) output
|
| 467 |
+
x = (x.mean(1)).sigmoid()
|
| 468 |
+
return x.mean(1)
|
| 469 |
+
elif self.pooling is None:
|
| 470 |
+
return x
|
| 471 |
+
else:
|
| 472 |
+
return x.mean(1)
|
| 473 |
+
|
| 474 |
+
def _audiosample_to_mellength(self, lengths: torch.Tensor) -> torch.Tensor:
|
| 475 |
+
if self.center:
|
| 476 |
+
lengths = lengths + self.win_size
|
| 477 |
+
lengths = 1 + ((lengths - self.win_size) / self.hop_size).long()
|
| 478 |
+
return lengths
|
| 479 |
+
|
| 480 |
+
# Calculates the number of patches for a given length in audio-samples
|
| 481 |
+
# For example : torch.Tensor([16000]) will return 250 for Dasheng
|
| 482 |
+
def _audiosample_to_patchlength(self, lengths: torch.Tensor) -> torch.Tensor:
|
| 483 |
+
lengths = self._audiosample_to_mellength(lengths)
|
| 484 |
+
return self._frames_to_patchlength(lengths)
|
| 485 |
+
|
| 486 |
+
# Calcualtes the same as above but for a spectrogram input
|
| 487 |
+
# i.e., [100] will return 25 for Dasheng
|
| 488 |
+
def _frames_to_patchlength(self, lengths: torch.Tensor) -> torch.Tensor:
|
| 489 |
+
patch_stride = to_2tuple(self.patch_stride)
|
| 490 |
+
patch_size = to_2tuple(self.patch_size)
|
| 491 |
+
frequency_patch_size = self.n_mels // patch_stride[0]
|
| 492 |
+
time_patch_size = patch_stride[1]
|
| 493 |
+
time_window_size = patch_size[1]
|
| 494 |
+
number_of_tokens = (
|
| 495 |
+
torch.floor((lengths - time_window_size) / time_patch_size) + 1
|
| 496 |
+
) * frequency_patch_size
|
| 497 |
+
if self.pooling == "token":
|
| 498 |
+
number_of_tokens += 1
|
| 499 |
+
return number_of_tokens
|
| 500 |
+
|
| 501 |
+
# Note that we use (... t f) -> (f t) here, meaning that patches are ordered as:
|
| 502 |
+
# 0 4 -> 0 4 1 5 2 6 3 7
|
| 503 |
+
# 1 5
|
| 504 |
+
# 2 6
|
| 505 |
+
# 3 7
|
| 506 |
+
# This function does the (t f) -> (f t) transform
|
| 507 |
+
def _reshape_mask_to_ft_format(self, mask: torch.Tensor) -> torch.Tensor:
|
| 508 |
+
n_freq_patches = self.n_mels // to_2tuple(self.patch_stride)[0]
|
| 509 |
+
mask = (
|
| 510 |
+
mask.reshape(-1, n_freq_patches)
|
| 511 |
+
.transpose(-2, -1)
|
| 512 |
+
.flatten(-2)
|
| 513 |
+
.reshape_as(mask)
|
| 514 |
+
)
|
| 515 |
+
return mask
|
| 516 |
+
|
| 517 |
+
def _to_binary_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 518 |
+
batch_size = len(lengths)
|
| 519 |
+
lengths = self._audiosample_to_patchlength(lengths)
|
| 520 |
+
idx = torch.arange(max_length, device=lengths.device)
|
| 521 |
+
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
| 522 |
+
mask = (idx >= lengths.unsqueeze(-1)).bool()
|
| 523 |
+
return mask
|
| 524 |
+
|
| 525 |
+
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 526 |
+
batch_size = len(lengths)
|
| 527 |
+
idx = torch.arange(max_length, device=lengths.device)
|
| 528 |
+
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
| 529 |
+
mask = (idx >= lengths.unsqueeze(-1)).bool()
|
| 530 |
+
return mask
|
| 531 |
+
|
| 532 |
+
def _create_mask(self, x_length, audio_length_in_spec_frames: int):
|
| 533 |
+
max_length_in_patches = self._frames_to_patchlength(
|
| 534 |
+
torch.tensor(audio_length_in_spec_frames)
|
| 535 |
+
)
|
| 536 |
+
mask_1d = self._to_binary_mask(x_length, max_length=int(max_length_in_patches))
|
| 537 |
+
return mask_1d
|
| 538 |
+
|
| 539 |
+
def forward(
|
| 540 |
+
self, x: torch.Tensor, x_length: Optional[torch.Tensor] = None
|
| 541 |
+
) -> torch.Tensor:
|
| 542 |
+
x = self.front_end(x)
|
| 543 |
+
target_length_in_patches = self.target_length // 4
|
| 544 |
+
x = x.unsqueeze(1)
|
| 545 |
+
x = self.init_bn(x)
|
| 546 |
+
|
| 547 |
+
x = self.patch_embed(x)
|
| 548 |
+
t = x.shape[-1]
|
| 549 |
+
|
| 550 |
+
input_splits = x.split(target_length_in_patches, dim=-1)
|
| 551 |
+
mask = None # Single mask
|
| 552 |
+
masks = [None for _ in range(len(input_splits))]
|
| 553 |
+
|
| 554 |
+
if x_length is not None:
|
| 555 |
+
assert len(x_length) == len(x), (
|
| 556 |
+
"batchsizes of input x and x_length need to be same"
|
| 557 |
+
)
|
| 558 |
+
assert x_length.ndim == 1, "Lengths are of size (B,)"
|
| 559 |
+
scaled_lengths = (
|
| 560 |
+
x_length / (self.hop_size * 4)
|
| 561 |
+
).long() # 40ms for all dasheng models
|
| 562 |
+
# Note that the mask is in (t f) format, but transformers here use (f t) format
|
| 563 |
+
mask = self._to_mask(
|
| 564 |
+
max_length=t,
|
| 565 |
+
lengths=scaled_lengths,
|
| 566 |
+
)
|
| 567 |
+
# Trim mask to only use valid "patches", since x.shape[-1] is based on the possibly padded input
|
| 568 |
+
masks = mask.split(target_length_in_patches, dim=-1)
|
| 569 |
+
|
| 570 |
+
outputs = []
|
| 571 |
+
|
| 572 |
+
for split_x, mask in zip(input_splits, masks):
|
| 573 |
+
forward_kwargs = {}
|
| 574 |
+
forward_kwargs["mask"] = mask
|
| 575 |
+
split_x = self.forward_features(split_x, **forward_kwargs)
|
| 576 |
+
split_x = self.forward_head(split_x, **forward_kwargs)
|
| 577 |
+
outputs.append(split_x)
|
| 578 |
+
x = torch.cat(outputs, dim=1)
|
| 579 |
+
return x
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
class LemonstoreWrapper(nn.Module):
|
| 583 |
+
def __init__(
|
| 584 |
+
self,
|
| 585 |
+
append_cls_token: bool = False,
|
| 586 |
+
**kwargs,
|
| 587 |
+
):
|
| 588 |
+
super().__init__()
|
| 589 |
+
self.append_cls_token = (
|
| 590 |
+
append_cls_token # Pool all tokens to one as a "cls" token
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
model_default_kwargs = {
|
| 594 |
+
"audiotransformer_huge.dasheng06b.10s": {
|
| 595 |
+
"embed_dim": 1280,
|
| 596 |
+
"depth": 32,
|
| 597 |
+
"num_heads": 16,
|
| 598 |
+
"pooling": "mean",
|
| 599 |
+
"drop_path_rate": 0.0,
|
| 600 |
+
"outputdim": 527,
|
| 601 |
+
"patch_size": [64, 4],
|
| 602 |
+
"patch_stride": [64, 4],
|
| 603 |
+
"target_length": 1008,
|
| 604 |
+
}
|
| 605 |
+
}
|
| 606 |
+
if "pretrained" in kwargs:
|
| 607 |
+
del kwargs["pretrained"]
|
| 608 |
+
|
| 609 |
+
create_kwargs = model_default_kwargs[kwargs.pop("model_name")]
|
| 610 |
+
create_kwargs.update(kwargs)
|
| 611 |
+
create_kwargs.update(
|
| 612 |
+
pooling=None,
|
| 613 |
+
eval_avg="cat",
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
self.model = AudioTransformer(**create_kwargs)
|
| 617 |
+
self.embed_dim = self.model.embed_dim
|
| 618 |
+
|
| 619 |
+
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
|
| 620 |
+
batch_size = len(lengths)
|
| 621 |
+
idx = torch.arange(max_length, device=lengths.device)
|
| 622 |
+
idx = idx.repeat(batch_size).view(batch_size, max_length)
|
| 623 |
+
mask = (idx < lengths.unsqueeze(-1)).long()
|
| 624 |
+
return mask
|
| 625 |
+
|
| 626 |
+
def _create_encoder_attention_mask(
|
| 627 |
+
self, model_output: torch.Tensor, input_lengths: torch.Tensor
|
| 628 |
+
):
|
| 629 |
+
scaled_lengths = (
|
| 630 |
+
input_lengths / (self.model.hop_size * 4)
|
| 631 |
+
).long() # 40ms for all dasheng models
|
| 632 |
+
return self._to_mask(scaled_lengths, max_length=model_output.shape[1])
|
| 633 |
+
|
| 634 |
+
def forward(
|
| 635 |
+
self,
|
| 636 |
+
input: torch.Tensor,
|
| 637 |
+
input_length: Optional[torch.Tensor] = None,
|
| 638 |
+
return_attention_mask: bool = False,
|
| 639 |
+
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
| 640 |
+
emb = self.model(input, input_length)
|
| 641 |
+
# Outputs are added to multiple of 10s, remove the padded items
|
| 642 |
+
if input_length is not None:
|
| 643 |
+
input_length = input_length + self.model.n_fft
|
| 644 |
+
scaled_lengths = (
|
| 645 |
+
(1 + (input_length - self.model.n_fft) / self.model.hop_size) // 4
|
| 646 |
+
).long() # 40ms for all dasheng models
|
| 647 |
+
max_length = torch.max(scaled_lengths)
|
| 648 |
+
emb = emb[:, :max_length, :]
|
| 649 |
+
if self.append_cls_token:
|
| 650 |
+
emb = torch.cat([emb.mean(1, keepdims=True), emb], dim=1)
|
| 651 |
+
if return_attention_mask and input_length is not None:
|
| 652 |
+
return emb, self._create_encoder_attention_mask(emb, input_length)
|
| 653 |
+
return emb
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
class DashengQwen25OmniModelInstruct(PreTrainedModel):
|
| 657 |
+
config_class = MiAudioLLMHFConfig
|
| 658 |
+
|
| 659 |
+
def __init__(self, config: MiAudioLLMHFConfig):
|
| 660 |
+
super().__init__(config)
|
| 661 |
+
|
| 662 |
+
audio_encoder = config.audio_encoder
|
| 663 |
+
audio_encoder_args = config.audio_encoder_args
|
| 664 |
+
text_model = config.text_model
|
| 665 |
+
text_model_args = config.text_model_args
|
| 666 |
+
freeze = config.freeze
|
| 667 |
+
lora = config.lora
|
| 668 |
+
subsample_factor = config.subsample_factor
|
| 669 |
+
use_encoderattention_mask = config.use_encoderattention_mask
|
| 670 |
+
resize_tokenizer = True
|
| 671 |
+
lora_r = 8
|
| 672 |
+
lora_target_modules = ("q_proj", "v_proj")
|
| 673 |
+
force_fp32 = False
|
| 674 |
+
|
| 675 |
+
from transformers.models.qwen2_5_omni import (
|
| 676 |
+
Qwen2_5OmniProcessor,
|
| 677 |
+
Qwen2_5OmniThinkerForConditionalGeneration,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
self.subsample_factor = subsample_factor
|
| 681 |
+
self.lora = lora
|
| 682 |
+
self.use_encoderattention_mask = use_encoderattention_mask
|
| 683 |
+
# Encoder part
|
| 684 |
+
assert audio_encoder == "LemonstoreWrapper"
|
| 685 |
+
self.audio_encoder = LemonstoreWrapper(**audio_encoder_args)
|
| 686 |
+
if lora == "encoder":
|
| 687 |
+
encoder_peft_config = LoraConfig(
|
| 688 |
+
target_modules=["q_proj", "v_proj"],
|
| 689 |
+
inference_mode=False,
|
| 690 |
+
r=8,
|
| 691 |
+
lora_alpha=32,
|
| 692 |
+
lora_dropout=0.1,
|
| 693 |
+
)
|
| 694 |
+
self.audio_encoder = get_peft_model(self.audio_encoder, encoder_peft_config)
|
| 695 |
+
|
| 696 |
+
# For some reason, torch.cuda.is_bf16_supported() does return True on V100
|
| 697 |
+
has_bf16support = torch.cuda.get_device_capability(torch.device("cuda"))[0] > 7
|
| 698 |
+
|
| 699 |
+
# decoder
|
| 700 |
+
self.processor = Qwen2_5OmniProcessor.from_pretrained(text_model)
|
| 701 |
+
self.tokenizer = self.processor.tokenizer
|
| 702 |
+
self.decoder = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
|
| 703 |
+
text_model,
|
| 704 |
+
attn_implementation="sdpa",
|
| 705 |
+
torch_dtype=torch.bfloat16
|
| 706 |
+
if not force_fp32 and has_bf16support
|
| 707 |
+
else torch.float32,
|
| 708 |
+
**text_model_args,
|
| 709 |
+
)
|
| 710 |
+
del self.decoder.visual
|
| 711 |
+
del self.decoder.audio_tower
|
| 712 |
+
hidden_size_text = self.decoder.model.config.hidden_size
|
| 713 |
+
# Overwrite default ForCausalLMLoss, now also support reduction
|
| 714 |
+
special_tokens = [
|
| 715 |
+
"<|en|>",
|
| 716 |
+
"<|kr|>",
|
| 717 |
+
"<|de|>",
|
| 718 |
+
"<|es|>",
|
| 719 |
+
"<|fr|>",
|
| 720 |
+
"<|hi|>",
|
| 721 |
+
"<|uk|>",
|
| 722 |
+
"<|th|>",
|
| 723 |
+
"<|vi|>",
|
| 724 |
+
"<|nl|>",
|
| 725 |
+
"<|pt|>",
|
| 726 |
+
"<|id|>",
|
| 727 |
+
"<|ru|>",
|
| 728 |
+
"<|it|>",
|
| 729 |
+
"<|ar|>",
|
| 730 |
+
"<|jp|>",
|
| 731 |
+
"<|unknown|>",
|
| 732 |
+
]
|
| 733 |
+
self.tokenizer.add_special_tokens({"additional_special_tokens": special_tokens})
|
| 734 |
+
if resize_tokenizer:
|
| 735 |
+
self.decoder.model.resize_token_embeddings(len(self.tokenizer))
|
| 736 |
+
if lora == "decoder":
|
| 737 |
+
peft_config = LoraConfig(
|
| 738 |
+
target_modules=lora_target_modules,
|
| 739 |
+
task_type=TaskType.CAUSAL_LM,
|
| 740 |
+
trainable_token_indices={
|
| 741 |
+
"embed_tokens": self.tokenizer.convert_tokens_to_ids(special_tokens)
|
| 742 |
+
},
|
| 743 |
+
inference_mode=False,
|
| 744 |
+
r=lora_r,
|
| 745 |
+
lora_alpha=32,
|
| 746 |
+
lora_dropout=0.1,
|
| 747 |
+
)
|
| 748 |
+
self.decoder = get_peft_model(self.decoder, peft_config)
|
| 749 |
+
self.decoder.print_trainable_parameters()
|
| 750 |
+
if freeze is not None and "text" in freeze:
|
| 751 |
+
lora_config = LoraConfig(
|
| 752 |
+
target_modules="dummy-target-modules",
|
| 753 |
+
trainable_token_indices={
|
| 754 |
+
"embed_tokens": self.tokenizer.convert_tokens_to_ids(special_tokens)
|
| 755 |
+
},
|
| 756 |
+
)
|
| 757 |
+
self.decoder = get_peft_model(self.decoder, lora_config)
|
| 758 |
+
self.decoder.print_trainable_parameters()
|
| 759 |
+
|
| 760 |
+
# audio projector
|
| 761 |
+
self.audio_projector = AudioProjectorSubsample(
|
| 762 |
+
self.audio_encoder.embed_dim, hidden_size_text, self.subsample_factor
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
def _forward_audio_encoder(self, audios, audio_length: Iterable[int] | None):
|
| 766 |
+
encoder_out = self.audio_encoder(
|
| 767 |
+
audios, audio_length, return_attention_mask=self.use_encoderattention_mask
|
| 768 |
+
)
|
| 769 |
+
encoder_atts = None
|
| 770 |
+
|
| 771 |
+
if self.use_encoderattention_mask:
|
| 772 |
+
encoder_out, encoder_atts = encoder_out
|
| 773 |
+
|
| 774 |
+
# audio projector
|
| 775 |
+
encoder_out, encoder_atts = self.audio_projector(encoder_out, encoder_atts)
|
| 776 |
+
|
| 777 |
+
return encoder_out, encoder_atts
|
| 778 |
+
|
| 779 |
+
def _prepare_with_input_ids(
|
| 780 |
+
self, input_ids: torch.Tensor, audio_embeddings, audio_token_id
|
| 781 |
+
):
|
| 782 |
+
special_mask = input_ids == audio_token_id
|
| 783 |
+
assert audio_embeddings.shape[1] <= (special_mask.sum(-1)).max(), (
|
| 784 |
+
"Mask and audio embeddings seem to have different sizes"
|
| 785 |
+
)
|
| 786 |
+
input_embeddings = self.decoder.model.embed_tokens(input_ids)
|
| 787 |
+
audio_embeddings = audio_embeddings.to(input_embeddings.dtype)
|
| 788 |
+
|
| 789 |
+
for i in range(len(special_mask)):
|
| 790 |
+
mask = special_mask[i]
|
| 791 |
+
number_of_tokens = mask.sum(-1)
|
| 792 |
+
input_embeddings[i, mask] = audio_embeddings[i, :number_of_tokens]
|
| 793 |
+
return input_embeddings
|
| 794 |
+
|
| 795 |
+
def forward(
|
| 796 |
+
self,
|
| 797 |
+
input_ids: Tensor,
|
| 798 |
+
input_values: Tensor,
|
| 799 |
+
audio_length: Iterable[int] | None,
|
| 800 |
+
return_loss: bool = False,
|
| 801 |
+
attention_mask: Tensor | None = None,
|
| 802 |
+
audio_token_id: int | None = None,
|
| 803 |
+
):
|
| 804 |
+
input_values = input_values.to(self.device)
|
| 805 |
+
audio_encoder_hidden_states, _ = self._forward_audio_encoder(
|
| 806 |
+
input_values, audio_length=audio_length
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
input_ids = input_ids.to(self.device)
|
| 810 |
+
input_embeds = self._prepare_with_input_ids(
|
| 811 |
+
input_ids=input_ids,
|
| 812 |
+
audio_embeddings=audio_encoder_hidden_states,
|
| 813 |
+
audio_token_id=audio_token_id,
|
| 814 |
+
)
|
| 815 |
+
input_mask = attention_mask
|
| 816 |
+
decoder_targets = torch.nn.functional.pad(input_ids[:, 1:], (0, 1), value=-100)
|
| 817 |
+
|
| 818 |
+
decoder_output = self.decoder(
|
| 819 |
+
input_ids=None,
|
| 820 |
+
inputs_embeds=input_embeds,
|
| 821 |
+
attention_mask=input_mask,
|
| 822 |
+
labels=decoder_targets,
|
| 823 |
+
return_dict=True,
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
if return_loss:
|
| 827 |
+
return decoder_output.loss
|
| 828 |
+
return decoder_output.logits
|
| 829 |
+
|
| 830 |
+
def generate(
|
| 831 |
+
self,
|
| 832 |
+
input_ids: Tensor,
|
| 833 |
+
input_values: Tensor,
|
| 834 |
+
audio_length: Iterable[int] | None,
|
| 835 |
+
use_nucleus_sampling=False,
|
| 836 |
+
max_length=1024,
|
| 837 |
+
top_p=1.0,
|
| 838 |
+
top_k: int = 50,
|
| 839 |
+
temperature: float = 1.0,
|
| 840 |
+
repetition_penalty=1.0,
|
| 841 |
+
return_text=True,
|
| 842 |
+
# The following are only used by HF
|
| 843 |
+
attention_mask: Tensor | None = None,
|
| 844 |
+
audio_token_id: int | None = None,
|
| 845 |
+
):
|
| 846 |
+
encoder_hidden_states, encoder_atts = self._forward_audio_encoder(
|
| 847 |
+
input_values, audio_length=audio_length
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
input_ids = input_ids.to(self.device)
|
| 851 |
+
input_embeds = self._prepare_with_input_ids(
|
| 852 |
+
input_ids=input_ids,
|
| 853 |
+
audio_embeddings=encoder_hidden_states,
|
| 854 |
+
audio_token_id=audio_token_id,
|
| 855 |
+
)
|
| 856 |
+
input_mask = attention_mask
|
| 857 |
+
|
| 858 |
+
outputs = self.decoder.generate(
|
| 859 |
+
inputs_embeds=input_embeds,
|
| 860 |
+
attention_mask=input_mask,
|
| 861 |
+
do_sample=use_nucleus_sampling,
|
| 862 |
+
max_new_tokens=max_length,
|
| 863 |
+
top_p=top_p,
|
| 864 |
+
top_k=top_k,
|
| 865 |
+
temperature=temperature,
|
| 866 |
+
repetition_penalty=repetition_penalty,
|
| 867 |
+
eos_token_id=[self.tokenizer.pad_token_id, self.tokenizer.eos_token_id],
|
| 868 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 869 |
+
)
|
| 870 |
+
if not return_text:
|
| 871 |
+
return outputs
|
| 872 |
+
texts = self.tokenizer.batch_decode(
|
| 873 |
+
outputs,
|
| 874 |
+
add_special_tokens=False,
|
| 875 |
+
skip_special_tokens=True,
|
| 876 |
+
clean_up_tokenization_spaces=True,
|
| 877 |
+
)
|
| 878 |
+
return texts
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_midashenglm.MiAudioLLMProcessor"
|
| 4 |
+
},
|
| 5 |
+
"do_normalize": false,
|
| 6 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 7 |
+
"feature_size": 1,
|
| 8 |
+
"padding_side": "right",
|
| 9 |
+
"padding_value": 0.0,
|
| 10 |
+
"processor_class": "MiAudioLLMProcessor",
|
| 11 |
+
"return_attention_mask": false,
|
| 12 |
+
"sampling_rate": 16000
|
| 13 |
+
}
|
processing.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import Qwen2Tokenizer, Qwen2TokenizerFast, Wav2Vec2FeatureExtractor
|
| 8 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 9 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MiAudioLLMProcessorKwargs(ProcessingKwargs):
|
| 13 |
+
_defaults = {
|
| 14 |
+
"text_kwargs": {
|
| 15 |
+
"padding": True,
|
| 16 |
+
"padding_side": "left",
|
| 17 |
+
},
|
| 18 |
+
"audio_kwargs": {},
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def calculate_mel_frames_dasheng(
|
| 23 |
+
audio_length_samples: int,
|
| 24 |
+
n_fft: int = 512,
|
| 25 |
+
hop_size: int = 160,
|
| 26 |
+
dasheng_subsampling: int = 4,
|
| 27 |
+
center=True,
|
| 28 |
+
model_subsampling: int = 5,
|
| 29 |
+
) -> int:
|
| 30 |
+
"""Calculate the number of Mel-spectrogram frames."""
|
| 31 |
+
if center:
|
| 32 |
+
audio_length_samples = audio_length_samples + n_fft
|
| 33 |
+
|
| 34 |
+
return (
|
| 35 |
+
int(1 + ((audio_length_samples - n_fft) / hop_size))
|
| 36 |
+
// dasheng_subsampling
|
| 37 |
+
// model_subsampling
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class MiAudioLLMProcessor(ProcessorMixin):
|
| 42 |
+
attributes = ["feature_extractor", "tokenizer"]
|
| 43 |
+
valid_kwargs = [
|
| 44 |
+
"chat_template",
|
| 45 |
+
"audio_token",
|
| 46 |
+
"audio_bos_token",
|
| 47 |
+
"audio_eos_token",
|
| 48 |
+
]
|
| 49 |
+
feature_extractor_class = "Wav2Vec2FeatureExtractor"
|
| 50 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
feature_extractor: Wav2Vec2FeatureExtractor | None = None,
|
| 55 |
+
tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast | None = None,
|
| 56 |
+
model_subsampling: int = 5,
|
| 57 |
+
chat_template: str | None = None,
|
| 58 |
+
# TODO 是否可以移除?
|
| 59 |
+
audio_token: str = "<|AUDIO|>",
|
| 60 |
+
audio_bos_token: str = "<|audio_bos|>",
|
| 61 |
+
audio_eos_token: str = "<|audio_eos|>",
|
| 62 |
+
):
|
| 63 |
+
if chat_template is None:
|
| 64 |
+
chat_template = self.default_chat_template
|
| 65 |
+
assert tokenizer is not None, "Tokenizer Needs to be passed"
|
| 66 |
+
self.audio_token = (
|
| 67 |
+
tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
|
| 68 |
+
)
|
| 69 |
+
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
|
| 70 |
+
self.audio_bos_token = (
|
| 71 |
+
tokenizer.audio_bos_token
|
| 72 |
+
if hasattr(tokenizer, "audio_bos_token")
|
| 73 |
+
else audio_bos_token
|
| 74 |
+
)
|
| 75 |
+
self.audio_eos_token = (
|
| 76 |
+
tokenizer.audio_eos_token
|
| 77 |
+
if hasattr(tokenizer, "audio_eos_token")
|
| 78 |
+
else audio_eos_token
|
| 79 |
+
)
|
| 80 |
+
self.model_subsampling = model_subsampling
|
| 81 |
+
# Fix Normalization
|
| 82 |
+
if feature_extractor is not None and feature_extractor.do_normalize is True:
|
| 83 |
+
feature_extractor.do_normalize = False
|
| 84 |
+
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
|
| 85 |
+
|
| 86 |
+
def __call__(
|
| 87 |
+
self,
|
| 88 |
+
text: List[str] | None = None,
|
| 89 |
+
audio: List[np.ndarray] | List[torch.Tensor] | None = None,
|
| 90 |
+
**kwargs: Unpack[MiAudioLLMProcessorKwargs],
|
| 91 |
+
) -> BatchFeature:
|
| 92 |
+
if text is None:
|
| 93 |
+
raise ValueError("You need to specify `text` input to process.")
|
| 94 |
+
elif isinstance(text, str):
|
| 95 |
+
text = [text]
|
| 96 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 97 |
+
raise ValueError(
|
| 98 |
+
"Invalid input text. Please provide a string, or a list of strings"
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
output_kwargs = self._merge_kwargs(
|
| 102 |
+
MiAudioLLMProcessorKwargs,
|
| 103 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 104 |
+
**kwargs,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if audio is not None:
|
| 108 |
+
if isinstance(audio[0], torch.Tensor):
|
| 109 |
+
audio = [sample_.numpy() for sample_ in audio]
|
| 110 |
+
|
| 111 |
+
if isinstance(audio[0], torch.Tensor):
|
| 112 |
+
audio = [sample_.squeeze(0) for sample_ in audio]
|
| 113 |
+
if not all(x_.ndim == 1 for x_ in audio):
|
| 114 |
+
raise ValueError("All samples in a list must be 1D.")
|
| 115 |
+
if isinstance(audio[0], np.ndarray):
|
| 116 |
+
if not all(x_.ndim == 1 for x_ in audio):
|
| 117 |
+
raise ValueError("All samples in a list must be 1D.")
|
| 118 |
+
# ensure we have as much audios as audio tokens
|
| 119 |
+
num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
|
| 120 |
+
num_audios = 1 if type(audio) is np.ndarray else len(audio)
|
| 121 |
+
if num_audio_tokens != num_audios:
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Some kwargs should not be changed so we can expand text with audio tokens below
|
| 127 |
+
output_kwargs["audio_kwargs"]["return_attention_mask"] = True
|
| 128 |
+
output_kwargs["audio_kwargs"]["padding"] = True
|
| 129 |
+
output_kwargs["audio_kwargs"]["return_tensors"] = "pt"
|
| 130 |
+
|
| 131 |
+
# + Padding
|
| 132 |
+
audio_inputs = self.feature_extractor(
|
| 133 |
+
audio, **output_kwargs["audio_kwargs"]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# remove attention mask, dasheng uses lengths
|
| 137 |
+
audio_feature_mask = audio_inputs.pop("attention_mask")
|
| 138 |
+
|
| 139 |
+
expanded_text = []
|
| 140 |
+
audio_lengths = audio_feature_mask.sum(-1).tolist()
|
| 141 |
+
audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
|
| 142 |
+
audio_inputs["audio_token_id"] = (
|
| 143 |
+
self.audio_token_id
|
| 144 |
+
) # Pass to the model such that i knows what is the placeholder id
|
| 145 |
+
|
| 146 |
+
for sample in text:
|
| 147 |
+
replace_str = []
|
| 148 |
+
while self.audio_token in sample:
|
| 149 |
+
audio_length = audio_lengths.pop(0)
|
| 150 |
+
num_audio_tokens = calculate_mel_frames_dasheng(
|
| 151 |
+
audio_length, model_subsampling=self.model_subsampling
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
expanded_audio_token = self.audio_token * num_audio_tokens
|
| 155 |
+
|
| 156 |
+
audio_token_start_idx = sample.find(self.audio_token)
|
| 157 |
+
audio_token_end_idx = audio_token_start_idx + len(self.audio_token)
|
| 158 |
+
|
| 159 |
+
has_bos = (
|
| 160 |
+
sample[
|
| 161 |
+
audio_token_start_idx
|
| 162 |
+
- len(self.audio_bos_token) : audio_token_start_idx
|
| 163 |
+
]
|
| 164 |
+
== self.audio_bos_token
|
| 165 |
+
)
|
| 166 |
+
has_eos = (
|
| 167 |
+
sample[
|
| 168 |
+
audio_token_end_idx : audio_token_end_idx
|
| 169 |
+
+ len(self.audio_eos_token)
|
| 170 |
+
]
|
| 171 |
+
== self.audio_eos_token
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Check if this audio token is surrounded by bos/eos tokens
|
| 175 |
+
if not has_bos and not has_eos:
|
| 176 |
+
expanded_audio_token = (
|
| 177 |
+
self.audio_bos_token
|
| 178 |
+
+ expanded_audio_token
|
| 179 |
+
+ self.audio_eos_token
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
replace_str.append(expanded_audio_token)
|
| 183 |
+
sample = sample.replace(self.audio_token, "<placeholder>", 1)
|
| 184 |
+
|
| 185 |
+
while "<placeholder>" in sample:
|
| 186 |
+
sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
|
| 187 |
+
expanded_text.append(sample)
|
| 188 |
+
text = expanded_text
|
| 189 |
+
|
| 190 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
|
| 191 |
+
inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 192 |
+
if hasattr(self, "_check_special_mm_tokens"):
|
| 193 |
+
self._check_special_mm_tokens(text, inputs, modalities=["audio"])
|
| 194 |
+
|
| 195 |
+
if audio is not None:
|
| 196 |
+
inputs.update(audio_inputs)
|
| 197 |
+
|
| 198 |
+
return BatchFeature(data={**inputs}, tensor_type=return_tensors)
|
| 199 |
+
|
| 200 |
+
def batch_decode(self, *args, **kwargs):
|
| 201 |
+
"""
|
| 202 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 203 |
+
refer to the docstring of this method for more information.
|
| 204 |
+
"""
|
| 205 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 206 |
+
|
| 207 |
+
def decode(self, *args, **kwargs):
|
| 208 |
+
"""
|
| 209 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 210 |
+
the docstring of this method for more information.
|
| 211 |
+
"""
|
| 212 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 213 |
+
|
| 214 |
+
@property
|
| 215 |
+
def model_input_names(self):
|
| 216 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 217 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
| 218 |
+
return list(
|
| 219 |
+
dict.fromkeys(
|
| 220 |
+
tokenizer_input_names + feature_extractor_input_names + ["audio_length"]
|
| 221 |
+
)
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
@property
|
| 225 |
+
# NOTE: we don't have default templates anymore, and the below is kept only because the hub config is not yet updated!
|
| 226 |
+
def default_chat_template(self):
|
| 227 |
+
"""
|
| 228 |
+
This default vicuna template formats inputs in the form of a chat history. For each message in the chat history:
|
| 229 |
+
* the template will output the role of the speaker followed by the content of the message.
|
| 230 |
+
* content is a list of strings and audios.
|
| 231 |
+
* If the content element is an audio, the template will output a sequence of <|AUDIO|> tokens
|
| 232 |
+
|
| 233 |
+
Example:
|
| 234 |
+
|
| 235 |
+
```python
|
| 236 |
+
messages = [
|
| 237 |
+
{'role': 'system', 'content': 'You are a helpful assistant.'},
|
| 238 |
+
{"role": "user", "content": [
|
| 239 |
+
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
|
| 240 |
+
{"type": "text", "text": "What's that sound?"},
|
| 241 |
+
]},
|
| 242 |
+
{"role": "assistant", "content": "It is the sound of glass shattering."},
|
| 243 |
+
{"role": "user", "content": [
|
| 244 |
+
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"},
|
| 245 |
+
{"type": "text", "text": "How about this one?"},
|
| 246 |
+
]},
|
| 247 |
+
]
|
| 248 |
+
|
| 249 |
+
result = template.render(messages=messages, add_generation_prompt=True)
|
| 250 |
+
```
|
| 251 |
+
"""
|
| 252 |
+
# fmt: off
|
| 253 |
+
return (
|
| 254 |
+
"{% set audio_count = namespace(value=0) %}"
|
| 255 |
+
"{% for message in messages %}"
|
| 256 |
+
"{% if loop.first and message['role'] != 'system' %}"
|
| 257 |
+
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
| 258 |
+
"{% endif %}"
|
| 259 |
+
"<|im_start|>{{ message['role'] }}\n"
|
| 260 |
+
"{% if message['content'] is string %}"
|
| 261 |
+
"{{ message['content'] }}<|im_end|>\n"
|
| 262 |
+
"{% else %}"
|
| 263 |
+
"{% for content in message['content'] %}"
|
| 264 |
+
"{% if 'audio' in content or 'audio_url' in content or message['type'] == 'audio' %}"
|
| 265 |
+
"{% set audio_count.value = audio_count.value + 1 %}"
|
| 266 |
+
"Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n"
|
| 267 |
+
"{% elif 'text' in content %}"
|
| 268 |
+
"{{ content['text'] }}"
|
| 269 |
+
"{% endif %}"
|
| 270 |
+
"{% endfor %}"
|
| 271 |
+
"<|im_end|>\n"
|
| 272 |
+
"{% endif %}"
|
| 273 |
+
"{% endfor %}"
|
| 274 |
+
"{% if add_generation_prompt %}"
|
| 275 |
+
"<|im_start|>assistant\n"
|
| 276 |
+
"{% endif %}"
|
| 277 |
+
)
|
processing_midashenglm.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import Qwen2Tokenizer, Qwen2TokenizerFast, Wav2Vec2FeatureExtractor
|
| 8 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 9 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MiAudioLLMProcessorKwargs(ProcessingKwargs):
|
| 13 |
+
_defaults = {
|
| 14 |
+
"text_kwargs": {
|
| 15 |
+
"padding": True,
|
| 16 |
+
"padding_side": "left",
|
| 17 |
+
},
|
| 18 |
+
"audio_kwargs": {},
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def calculate_mel_frames_dasheng(
|
| 23 |
+
audio_length_samples: int,
|
| 24 |
+
n_fft: int = 512,
|
| 25 |
+
hop_size: int = 160,
|
| 26 |
+
dasheng_subsampling: int = 4,
|
| 27 |
+
center=True,
|
| 28 |
+
model_subsampling: int = 5,
|
| 29 |
+
) -> int:
|
| 30 |
+
"""Calculate the number of Mel-spectrogram frames."""
|
| 31 |
+
if center:
|
| 32 |
+
audio_length_samples = audio_length_samples + n_fft
|
| 33 |
+
|
| 34 |
+
return (
|
| 35 |
+
int(1 + ((audio_length_samples - n_fft) / hop_size))
|
| 36 |
+
// dasheng_subsampling
|
| 37 |
+
// model_subsampling
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class MiAudioLLMProcessor(ProcessorMixin):
|
| 42 |
+
attributes = ["feature_extractor", "tokenizer"]
|
| 43 |
+
valid_kwargs = [
|
| 44 |
+
"chat_template",
|
| 45 |
+
"audio_token",
|
| 46 |
+
"audio_bos_token",
|
| 47 |
+
"audio_eos_token",
|
| 48 |
+
]
|
| 49 |
+
feature_extractor_class = "Wav2Vec2FeatureExtractor"
|
| 50 |
+
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
feature_extractor: Wav2Vec2FeatureExtractor | None = None,
|
| 55 |
+
tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast | None = None,
|
| 56 |
+
model_subsampling: int = 5,
|
| 57 |
+
chat_template: str | None = None,
|
| 58 |
+
# TODO 是否可以移除?
|
| 59 |
+
audio_token: str = "<|AUDIO|>",
|
| 60 |
+
audio_bos_token: str = "<|audio_bos|>",
|
| 61 |
+
audio_eos_token: str = "<|audio_eos|>",
|
| 62 |
+
):
|
| 63 |
+
if chat_template is None:
|
| 64 |
+
chat_template = self.default_chat_template
|
| 65 |
+
assert tokenizer is not None, "Tokenizer Needs to be passed"
|
| 66 |
+
self.audio_token = (
|
| 67 |
+
tokenizer.audio_token if hasattr(tokenizer, "audio_token") else audio_token
|
| 68 |
+
)
|
| 69 |
+
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
|
| 70 |
+
self.audio_bos_token = (
|
| 71 |
+
tokenizer.audio_bos_token
|
| 72 |
+
if hasattr(tokenizer, "audio_bos_token")
|
| 73 |
+
else audio_bos_token
|
| 74 |
+
)
|
| 75 |
+
self.audio_eos_token = (
|
| 76 |
+
tokenizer.audio_eos_token
|
| 77 |
+
if hasattr(tokenizer, "audio_eos_token")
|
| 78 |
+
else audio_eos_token
|
| 79 |
+
)
|
| 80 |
+
self.model_subsampling = model_subsampling
|
| 81 |
+
# Fix Normalization
|
| 82 |
+
if feature_extractor is not None and feature_extractor.do_normalize is True:
|
| 83 |
+
feature_extractor.do_normalize = False
|
| 84 |
+
super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
|
| 85 |
+
|
| 86 |
+
def __call__(
|
| 87 |
+
self,
|
| 88 |
+
text: List[str] | None = None,
|
| 89 |
+
audio: List[np.ndarray] | List[torch.Tensor] | None = None,
|
| 90 |
+
**kwargs: Unpack[MiAudioLLMProcessorKwargs],
|
| 91 |
+
) -> BatchFeature:
|
| 92 |
+
if text is None:
|
| 93 |
+
raise ValueError("You need to specify `text` input to process.")
|
| 94 |
+
elif isinstance(text, str):
|
| 95 |
+
text = [text]
|
| 96 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
| 97 |
+
raise ValueError(
|
| 98 |
+
"Invalid input text. Please provide a string, or a list of strings"
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
output_kwargs = self._merge_kwargs(
|
| 102 |
+
MiAudioLLMProcessorKwargs,
|
| 103 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
| 104 |
+
**kwargs,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if audio is not None:
|
| 108 |
+
if isinstance(audio[0], torch.Tensor):
|
| 109 |
+
audio = [sample_.numpy() for sample_ in audio]
|
| 110 |
+
|
| 111 |
+
if isinstance(audio[0], torch.Tensor):
|
| 112 |
+
audio = [sample_.squeeze(0) for sample_ in audio]
|
| 113 |
+
if not all(x_.ndim == 1 for x_ in audio):
|
| 114 |
+
raise ValueError("All samples in a list must be 1D.")
|
| 115 |
+
if isinstance(audio[0], np.ndarray):
|
| 116 |
+
if not all(x_.ndim == 1 for x_ in audio):
|
| 117 |
+
raise ValueError("All samples in a list must be 1D.")
|
| 118 |
+
# ensure we have as much audios as audio tokens
|
| 119 |
+
num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
|
| 120 |
+
num_audios = 1 if type(audio) is np.ndarray else len(audio)
|
| 121 |
+
if num_audio_tokens != num_audios:
|
| 122 |
+
raise ValueError(
|
| 123 |
+
f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Some kwargs should not be changed so we can expand text with audio tokens below
|
| 127 |
+
output_kwargs["audio_kwargs"]["return_attention_mask"] = True
|
| 128 |
+
output_kwargs["audio_kwargs"]["padding"] = True
|
| 129 |
+
output_kwargs["audio_kwargs"]["return_tensors"] = "pt"
|
| 130 |
+
|
| 131 |
+
# + Padding
|
| 132 |
+
audio_inputs = self.feature_extractor(
|
| 133 |
+
audio, **output_kwargs["audio_kwargs"]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# remove attention mask, dasheng uses lengths
|
| 137 |
+
audio_feature_mask = audio_inputs.pop("attention_mask")
|
| 138 |
+
|
| 139 |
+
expanded_text = []
|
| 140 |
+
audio_lengths = audio_feature_mask.sum(-1).tolist()
|
| 141 |
+
audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
|
| 142 |
+
audio_inputs["audio_token_id"] = (
|
| 143 |
+
self.audio_token_id
|
| 144 |
+
) # Pass to the model such that i knows what is the placeholder id
|
| 145 |
+
|
| 146 |
+
for sample in text:
|
| 147 |
+
replace_str = []
|
| 148 |
+
while self.audio_token in sample:
|
| 149 |
+
audio_length = audio_lengths.pop(0)
|
| 150 |
+
num_audio_tokens = calculate_mel_frames_dasheng(
|
| 151 |
+
audio_length, model_subsampling=self.model_subsampling
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
expanded_audio_token = self.audio_token * num_audio_tokens
|
| 155 |
+
|
| 156 |
+
audio_token_start_idx = sample.find(self.audio_token)
|
| 157 |
+
audio_token_end_idx = audio_token_start_idx + len(self.audio_token)
|
| 158 |
+
|
| 159 |
+
has_bos = (
|
| 160 |
+
sample[
|
| 161 |
+
audio_token_start_idx
|
| 162 |
+
- len(self.audio_bos_token) : audio_token_start_idx
|
| 163 |
+
]
|
| 164 |
+
== self.audio_bos_token
|
| 165 |
+
)
|
| 166 |
+
has_eos = (
|
| 167 |
+
sample[
|
| 168 |
+
audio_token_end_idx : audio_token_end_idx
|
| 169 |
+
+ len(self.audio_eos_token)
|
| 170 |
+
]
|
| 171 |
+
== self.audio_eos_token
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Check if this audio token is surrounded by bos/eos tokens
|
| 175 |
+
if not has_bos and not has_eos:
|
| 176 |
+
expanded_audio_token = (
|
| 177 |
+
self.audio_bos_token
|
| 178 |
+
+ expanded_audio_token
|
| 179 |
+
+ self.audio_eos_token
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
replace_str.append(expanded_audio_token)
|
| 183 |
+
sample = sample.replace(self.audio_token, "<placeholder>", 1)
|
| 184 |
+
|
| 185 |
+
while "<placeholder>" in sample:
|
| 186 |
+
sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
|
| 187 |
+
expanded_text.append(sample)
|
| 188 |
+
text = expanded_text
|
| 189 |
+
|
| 190 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
|
| 191 |
+
inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
| 192 |
+
if hasattr(self, "_check_special_mm_tokens"):
|
| 193 |
+
self._check_special_mm_tokens(text, inputs, modalities=["audio"])
|
| 194 |
+
|
| 195 |
+
if audio is not None:
|
| 196 |
+
inputs.update(audio_inputs)
|
| 197 |
+
|
| 198 |
+
return BatchFeature(data={**inputs}, tensor_type=return_tensors)
|
| 199 |
+
|
| 200 |
+
def batch_decode(self, *args, **kwargs):
|
| 201 |
+
"""
|
| 202 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 203 |
+
refer to the docstring of this method for more information.
|
| 204 |
+
"""
|
| 205 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 206 |
+
|
| 207 |
+
def decode(self, *args, **kwargs):
|
| 208 |
+
"""
|
| 209 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 210 |
+
the docstring of this method for more information.
|
| 211 |
+
"""
|
| 212 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 213 |
+
|
| 214 |
+
@property
|
| 215 |
+
def model_input_names(self):
|
| 216 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 217 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
| 218 |
+
return list(
|
| 219 |
+
dict.fromkeys(
|
| 220 |
+
tokenizer_input_names + feature_extractor_input_names + ["audio_length"]
|
| 221 |
+
)
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
@property
|
| 225 |
+
# NOTE: we don't have default templates anymore, and the below is kept only because the hub config is not yet updated!
|
| 226 |
+
def default_chat_template(self):
|
| 227 |
+
"""
|
| 228 |
+
This default vicuna template formats inputs in the form of a chat history. For each message in the chat history:
|
| 229 |
+
* the template will output the role of the speaker followed by the content of the message.
|
| 230 |
+
* content is a list of strings and audios.
|
| 231 |
+
* If the content element is an audio, the template will output a sequence of <|AUDIO|> tokens
|
| 232 |
+
|
| 233 |
+
Example:
|
| 234 |
+
|
| 235 |
+
```python
|
| 236 |
+
messages = [
|
| 237 |
+
{'role': 'system', 'content': 'You are a helpful assistant.'},
|
| 238 |
+
{"role": "user", "content": [
|
| 239 |
+
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
|
| 240 |
+
{"type": "text", "text": "What's that sound?"},
|
| 241 |
+
]},
|
| 242 |
+
{"role": "assistant", "content": "It is the sound of glass shattering."},
|
| 243 |
+
{"role": "user", "content": [
|
| 244 |
+
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"},
|
| 245 |
+
{"type": "text", "text": "How about this one?"},
|
| 246 |
+
]},
|
| 247 |
+
]
|
| 248 |
+
|
| 249 |
+
result = template.render(messages=messages, add_generation_prompt=True)
|
| 250 |
+
```
|
| 251 |
+
"""
|
| 252 |
+
# fmt: off
|
| 253 |
+
return (
|
| 254 |
+
"{% set audio_count = namespace(value=0) %}"
|
| 255 |
+
"{% for message in messages %}"
|
| 256 |
+
"{% if loop.first and message['role'] != 'system' %}"
|
| 257 |
+
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
| 258 |
+
"{% endif %}"
|
| 259 |
+
"<|im_start|>{{ message['role'] }}\n"
|
| 260 |
+
"{% if message['content'] is string %}"
|
| 261 |
+
"{{ message['content'] }}<|im_end|>\n"
|
| 262 |
+
"{% else %}"
|
| 263 |
+
"{% for content in message['content'] %}"
|
| 264 |
+
"{% if 'audio' in content or 'audio_url' in content or message['type'] == 'audio' %}"
|
| 265 |
+
"{% set audio_count.value = audio_count.value + 1 %}"
|
| 266 |
+
"Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n"
|
| 267 |
+
"{% elif 'text' in content %}"
|
| 268 |
+
"{{ content['text'] }}"
|
| 269 |
+
"{% endif %}"
|
| 270 |
+
"{% endfor %}"
|
| 271 |
+
"<|im_end|>\n"
|
| 272 |
+
"{% endif %}"
|
| 273 |
+
"{% endfor %}"
|
| 274 |
+
"{% if add_generation_prompt %}"
|
| 275 |
+
"<|im_start|>assistant\n"
|
| 276 |
+
"{% endif %}"
|
| 277 |
+
)
|
processor_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"audio_bos_token": "<|audio_bos|>",
|
| 3 |
+
"audio_eos_token": "<|audio_eos|>",
|
| 4 |
+
"audio_token": "<|AUDIO|>",
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoProcessor": "processing_midashenglm.MiAudioLLMProcessor"
|
| 7 |
+
},
|
| 8 |
+
"model_subsampling": 5,
|
| 9 |
+
"processor_class": "MiAudioLLMProcessor"
|
| 10 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "<|en|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"content": "<|kr|>",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"content": "<|de|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"content": "<|es|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"content": "<|fr|>",
|
| 33 |
+
"lstrip": false,
|
| 34 |
+
"normalized": false,
|
| 35 |
+
"rstrip": false,
|
| 36 |
+
"single_word": false
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"content": "<|hi|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"content": "<|uk|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"content": "<|th|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"content": "<|vi|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"content": "<|nl|>",
|
| 68 |
+
"lstrip": false,
|
| 69 |
+
"normalized": false,
|
| 70 |
+
"rstrip": false,
|
| 71 |
+
"single_word": false
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"content": "<|pt|>",
|
| 75 |
+
"lstrip": false,
|
| 76 |
+
"normalized": false,
|
| 77 |
+
"rstrip": false,
|
| 78 |
+
"single_word": false
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"content": "<|id|>",
|
| 82 |
+
"lstrip": false,
|
| 83 |
+
"normalized": false,
|
| 84 |
+
"rstrip": false,
|
| 85 |
+
"single_word": false
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"content": "<|ru|>",
|
| 89 |
+
"lstrip": false,
|
| 90 |
+
"normalized": false,
|
| 91 |
+
"rstrip": false,
|
| 92 |
+
"single_word": false
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"content": "<|it|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"content": "<|ar|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"content": "<|jp|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"content": "<|unknown|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false
|
| 121 |
+
}
|
| 122 |
+
],
|
| 123 |
+
"audio_bos_token": "<|audio_bos|>",
|
| 124 |
+
"audio_eos_token": "<|audio_eos|>",
|
| 125 |
+
"audio_token": "<|AUDIO|>",
|
| 126 |
+
"eos_token": {
|
| 127 |
+
"content": "<|im_end|>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false
|
| 132 |
+
},
|
| 133 |
+
"image_token": "<|IMAGE|>",
|
| 134 |
+
"pad_token": {
|
| 135 |
+
"content": "<|endoftext|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false
|
| 140 |
+
},
|
| 141 |
+
"video_token": "<|VIDEO|>",
|
| 142 |
+
"vision_bos_token": "<|vision_bos|>",
|
| 143 |
+
"vision_eos_token": "<|vision_eos|>"
|
| 144 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c40343a9d670f4fadbe6415ed2cff441055f663e51d813f2315c3368399914d5
|
| 3 |
+
size 11424986
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"151643": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151644": {
|
| 13 |
+
"content": "<|im_start|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151645": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"151646": {
|
| 29 |
+
"content": "<|AUDIO|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"151647": {
|
| 37 |
+
"content": "<|audio_bos|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"151648": {
|
| 45 |
+
"content": "<|audio_eos|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"151649": {
|
| 53 |
+
"content": "<|box_end|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"151650": {
|
| 61 |
+
"content": "<|quad_start|>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"151651": {
|
| 69 |
+
"content": "<|quad_end|>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"151652": {
|
| 77 |
+
"content": "<|vision_bos|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"151653": {
|
| 85 |
+
"content": "<|vision_eos|>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"151654": {
|
| 93 |
+
"content": "<|vision_pad|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"151655": {
|
| 101 |
+
"content": "<|IMAGE|>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"151656": {
|
| 109 |
+
"content": "<|VIDEO|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"151657": {
|
| 117 |
+
"content": "<tool_call>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": false
|
| 123 |
+
},
|
| 124 |
+
"151658": {
|
| 125 |
+
"content": "</tool_call>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": false
|
| 131 |
+
},
|
| 132 |
+
"151659": {
|
| 133 |
+
"content": "<|fim_prefix|>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": false
|
| 139 |
+
},
|
| 140 |
+
"151660": {
|
| 141 |
+
"content": "<|fim_middle|>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": false
|
| 147 |
+
},
|
| 148 |
+
"151661": {
|
| 149 |
+
"content": "<|fim_suffix|>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": false
|
| 155 |
+
},
|
| 156 |
+
"151662": {
|
| 157 |
+
"content": "<|fim_pad|>",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": false
|
| 163 |
+
},
|
| 164 |
+
"151663": {
|
| 165 |
+
"content": "<|repo_name|>",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": false
|
| 171 |
+
},
|
| 172 |
+
"151664": {
|
| 173 |
+
"content": "<|file_sep|>",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": false
|
| 179 |
+
},
|
| 180 |
+
"151665": {
|
| 181 |
+
"content": "<|en|>",
|
| 182 |
+
"lstrip": false,
|
| 183 |
+
"normalized": false,
|
| 184 |
+
"rstrip": false,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": true
|
| 187 |
+
},
|
| 188 |
+
"151666": {
|
| 189 |
+
"content": "<|kr|>",
|
| 190 |
+
"lstrip": false,
|
| 191 |
+
"normalized": false,
|
| 192 |
+
"rstrip": false,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": true
|
| 195 |
+
},
|
| 196 |
+
"151667": {
|
| 197 |
+
"content": "<|de|>",
|
| 198 |
+
"lstrip": false,
|
| 199 |
+
"normalized": false,
|
| 200 |
+
"rstrip": false,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": true
|
| 203 |
+
},
|
| 204 |
+
"151668": {
|
| 205 |
+
"content": "<|es|>",
|
| 206 |
+
"lstrip": false,
|
| 207 |
+
"normalized": false,
|
| 208 |
+
"rstrip": false,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": true
|
| 211 |
+
},
|
| 212 |
+
"151669": {
|
| 213 |
+
"content": "<|fr|>",
|
| 214 |
+
"lstrip": false,
|
| 215 |
+
"normalized": false,
|
| 216 |
+
"rstrip": false,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": true
|
| 219 |
+
},
|
| 220 |
+
"151670": {
|
| 221 |
+
"content": "<|hi|>",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": true
|
| 227 |
+
},
|
| 228 |
+
"151671": {
|
| 229 |
+
"content": "<|uk|>",
|
| 230 |
+
"lstrip": false,
|
| 231 |
+
"normalized": false,
|
| 232 |
+
"rstrip": false,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": true
|
| 235 |
+
},
|
| 236 |
+
"151672": {
|
| 237 |
+
"content": "<|th|>",
|
| 238 |
+
"lstrip": false,
|
| 239 |
+
"normalized": false,
|
| 240 |
+
"rstrip": false,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": true
|
| 243 |
+
},
|
| 244 |
+
"151673": {
|
| 245 |
+
"content": "<|vi|>",
|
| 246 |
+
"lstrip": false,
|
| 247 |
+
"normalized": false,
|
| 248 |
+
"rstrip": false,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": true
|
| 251 |
+
},
|
| 252 |
+
"151674": {
|
| 253 |
+
"content": "<|nl|>",
|
| 254 |
+
"lstrip": false,
|
| 255 |
+
"normalized": false,
|
| 256 |
+
"rstrip": false,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": true
|
| 259 |
+
},
|
| 260 |
+
"151675": {
|
| 261 |
+
"content": "<|pt|>",
|
| 262 |
+
"lstrip": false,
|
| 263 |
+
"normalized": false,
|
| 264 |
+
"rstrip": false,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": true
|
| 267 |
+
},
|
| 268 |
+
"151676": {
|
| 269 |
+
"content": "<|id|>",
|
| 270 |
+
"lstrip": false,
|
| 271 |
+
"normalized": false,
|
| 272 |
+
"rstrip": false,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": true
|
| 275 |
+
},
|
| 276 |
+
"151677": {
|
| 277 |
+
"content": "<|ru|>",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": true
|
| 283 |
+
},
|
| 284 |
+
"151678": {
|
| 285 |
+
"content": "<|it|>",
|
| 286 |
+
"lstrip": false,
|
| 287 |
+
"normalized": false,
|
| 288 |
+
"rstrip": false,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": true
|
| 291 |
+
},
|
| 292 |
+
"151679": {
|
| 293 |
+
"content": "<|ar|>",
|
| 294 |
+
"lstrip": false,
|
| 295 |
+
"normalized": false,
|
| 296 |
+
"rstrip": false,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": true
|
| 299 |
+
},
|
| 300 |
+
"151680": {
|
| 301 |
+
"content": "<|jp|>",
|
| 302 |
+
"lstrip": false,
|
| 303 |
+
"normalized": false,
|
| 304 |
+
"rstrip": false,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": true
|
| 307 |
+
},
|
| 308 |
+
"151681": {
|
| 309 |
+
"content": "<|unknown|>",
|
| 310 |
+
"lstrip": false,
|
| 311 |
+
"normalized": false,
|
| 312 |
+
"rstrip": false,
|
| 313 |
+
"single_word": false,
|
| 314 |
+
"special": true
|
| 315 |
+
}
|
| 316 |
+
},
|
| 317 |
+
"additional_special_tokens": [
|
| 318 |
+
"<|en|>",
|
| 319 |
+
"<|kr|>",
|
| 320 |
+
"<|de|>",
|
| 321 |
+
"<|es|>",
|
| 322 |
+
"<|fr|>",
|
| 323 |
+
"<|hi|>",
|
| 324 |
+
"<|uk|>",
|
| 325 |
+
"<|th|>",
|
| 326 |
+
"<|vi|>",
|
| 327 |
+
"<|nl|>",
|
| 328 |
+
"<|pt|>",
|
| 329 |
+
"<|id|>",
|
| 330 |
+
"<|ru|>",
|
| 331 |
+
"<|it|>",
|
| 332 |
+
"<|ar|>",
|
| 333 |
+
"<|jp|>",
|
| 334 |
+
"<|unknown|>"
|
| 335 |
+
],
|
| 336 |
+
"audio_bos_token": "<|audio_bos|>",
|
| 337 |
+
"audio_eos_token": "<|audio_eos|>",
|
| 338 |
+
"audio_token": "<|AUDIO|>",
|
| 339 |
+
"auto_map": {
|
| 340 |
+
"AutoProcessor": "processing_midashenglm.MiAudioLLMProcessor"
|
| 341 |
+
},
|
| 342 |
+
"bos_token": null,
|
| 343 |
+
"clean_up_tokenization_spaces": false,
|
| 344 |
+
"eos_token": "<|im_end|>",
|
| 345 |
+
"errors": "replace",
|
| 346 |
+
"extra_special_tokens": {
|
| 347 |
+
"audio_bos_token": "<|audio_bos|>",
|
| 348 |
+
"audio_eos_token": "<|audio_eos|>",
|
| 349 |
+
"audio_token": "<|AUDIO|>",
|
| 350 |
+
"image_token": "<|IMAGE|>",
|
| 351 |
+
"video_token": "<|VIDEO|>",
|
| 352 |
+
"vision_bos_token": "<|vision_bos|>",
|
| 353 |
+
"vision_eos_token": "<|vision_eos|>"
|
| 354 |
+
},
|
| 355 |
+
"image_token": "<|IMAGE|>",
|
| 356 |
+
"model_max_length": 32768,
|
| 357 |
+
"pad_token": "<|endoftext|>",
|
| 358 |
+
"processor_class": "MiAudioLLMProcessor",
|
| 359 |
+
"split_special_tokens": false,
|
| 360 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 361 |
+
"unk_token": null,
|
| 362 |
+
"video_token": "<|VIDEO|>",
|
| 363 |
+
"vision_bos_token": "<|vision_bos|>",
|
| 364 |
+
"vision_eos_token": "<|vision_eos|>"
|
| 365 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|