File size: 3,215 Bytes
a605bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
library_name: peft
language:
- it
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- b-brave-clean
metrics:
- wer
model-index:
- name: Whisper Medium
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: b-brave-clean
      type: b-brave-clean
      config: default
      split: test
      args: default
    metrics:
    - type: wer
      value: 57.44985673352435
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the b-brave-clean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6278
- Wer: 57.4499
- Cer: 38.7444
- Lr: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 16
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer      | Cer     | Lr     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|:------:|
| 4.3003        | 1.0   | 251  | 1.8420          | 77.7937  | 47.7279 | 0.0000 |
| 2.9936        | 2.0   | 502  | 1.2434          | 77.3639  | 47.9117 | 0.0000 |
| 2.8135        | 3.0   | 753  | 1.1431          | 74.9284  | 47.7279 | 0.0000 |
| 2.4032        | 4.0   | 1004 | 1.0400          | 74.6418  | 47.1237 | 0.0000 |
| 1.9765        | 5.0   | 1255 | 0.9656          | 74.2120  | 47.2551 | 0.0000 |
| 1.8144        | 6.0   | 1506 | 0.8685          | 107.3066 | 74.4944 | 0.0000 |
| 1.4479        | 7.0   | 1757 | 0.8158          | 63.8968  | 42.3431 | 0.0000 |
| 1.2718        | 8.0   | 2008 | 0.7787          | 67.1920  | 45.3901 | 0.0000 |
| 1.135         | 9.0   | 2259 | 0.7262          | 111.1748 | 98.4502 | 0.0000 |
| 0.833         | 10.0  | 2510 | 0.7015          | 94.4126  | 61.3869 | 0.0000 |
| 0.7509        | 11.0  | 2761 | 0.6963          | 62.1777  | 41.7914 | 0.0000 |
| 0.7171        | 12.0  | 3012 | 0.6650          | 61.8911  | 42.9997 | 0.0000 |
| 0.4706        | 13.0  | 3263 | 0.6258          | 77.6504  | 57.8671 | 0.0000 |
| 0.4988        | 14.0  | 3514 | 0.6249          | 59.5989  | 40.5306 | 0.0000 |
| 0.4503        | 15.0  | 3765 | 0.6201          | 59.1691  | 40.0841 | 0.0000 |
| 0.3741        | 16.0  | 4016 | 0.6278          | 57.4499  | 38.7444 | 0.0000 |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.2.0
- Datasets 3.2.0
- Tokenizers 0.21.0