File size: 1,536 Bytes
94a87c4
 
 
 
 
1b42f37
 
94a87c4
15cf7f0
9f8e6f3
 
 
 
 
 
 
 
 
 
15cf7f0
 
 
 
 
94a87c4
 
 
 
 
15cf7f0
94a87c4
d5ca319
 
94a87c4
1b42f37
 
 
 
94a87c4
 
 
 
 
 
 
 
 
 
 
907bbbc
94a87c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15cf7f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-big-scratch-iwslt2017
  results:
    - task:
        type: translation
      dataset:
        name: iwslt2017
        type: iwslt2017
      metrics:
        - name: BLEU
          type: BLEU
          value: 26.23
datasets:
- IWSLT/iwslt2017
language:
- en
- de
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-big-scratch-iwslt2017

[Source Code](https://github.com/minseok0809/transformer-implementation)

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3140
- Bleu: 0.2623
- Gen Len: 26.3604

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

- iwslt2017: https://huggingface.co/datasets/IWSLT/iwslt2017

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results



### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1