File size: 1,536 Bytes
94a87c4 1b42f37 94a87c4 15cf7f0 9f8e6f3 15cf7f0 94a87c4 15cf7f0 94a87c4 d5ca319 94a87c4 1b42f37 94a87c4 907bbbc 94a87c4 15cf7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-big-scratch-iwslt2017
results:
- task:
type: translation
dataset:
name: iwslt2017
type: iwslt2017
metrics:
- name: BLEU
type: BLEU
value: 26.23
datasets:
- IWSLT/iwslt2017
language:
- en
- de
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-big-scratch-iwslt2017
[Source Code](https://github.com/minseok0809/transformer-implementation)
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3140
- Bleu: 0.2623
- Gen Len: 26.3604
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
- iwslt2017: https://huggingface.co/datasets/IWSLT/iwslt2017
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1 |