Built with Axolotl

See axolotl config

axolotl version: 0.6.0



base_model: meta-llama/Llama-3.2-1B
hub_model_id: minpeter/Alpaca-Llama-3.2-1B-Instruct

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: tatsu-lab/alpaca
    type: alpaca
dataset_prepared_path: last_run_prepared
dataset_processes: 1000
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

Alpaca-Llama-3.2-1B-Instruct

This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the tatsu-lab/alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3881

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.5628 0.0127 1 1.5941
1.4085 0.4960 39 1.4333
1.3727 0.9921 78 1.3881

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
166
Safetensors
Model size
1.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for minpeter/Alpaca-Llama-3.2-1B-Instruct

Finetuned
(268)
this model
Quantizations
2 models

Dataset used to train minpeter/Alpaca-Llama-3.2-1B-Instruct