See axolotl config
axolotl version: 0.6.0
base_model: meta-llama/Llama-3.2-1B
hub_model_id: minpeter/Alpaca-Llama-3.2-1B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: tatsu-lab/alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
dataset_processes: 1000
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
Alpaca-Llama-3.2-1B-Instruct
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the tatsu-lab/alpaca dataset. It achieves the following results on the evaluation set:
- Loss: 1.3881
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5628 | 0.0127 | 1 | 1.5941 |
1.4085 | 0.4960 | 39 | 1.4333 |
1.3727 | 0.9921 | 78 | 1.3881 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 166
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.