--- tags: - fp8 language: - en base_model: Undi95/Lumimaid-Magnum-12B --- Original Model: https://huggingface.co/Undi95/Lumimaid-Magnum-12B Quantized with FP8 using https://github.com/neuralmagic/AutoFP8 Script: ```python from datasets import load_dataset from transformers import AutoTokenizer from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig pretrained_model_dir = "Undi95/Lumimaid-Magnum-12B" quantized_model_dir = "Lumimaid-Magnum-12B-FP8" tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096) tokenizer.pad_token = tokenizer.eos_token ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512)) examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds] examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda") quantize_config = BaseQuantizeConfig( quant_method="fp8", activation_scheme="static", ignore_patterns=["re:.*lm_head"], ) model = AutoFP8ForCausalLM.from_pretrained( pretrained_model_dir, quantize_config=quantize_config ) model.quantize(examples) model.save_quantized(quantized_model_dir) ```