--- license: mit language: - ru metrics: - f1 - roc_auc - precision - recall pipeline_tag: text-classification tags: - sentiment-analysis - multi-class-classification - sentiment analysis - rubert - sentiment - bert - tiny - russian - multiclass - classification datasets: - sismetanin/rureviews - RuSentiment - LinisCrowd2015 - LinisCrowd2016 - KaggleRussianNews --- The task is a __multi-class classification__ with the following labels: ```yaml 0: neutral 1: positive 2: negative ``` Label to Russian label: ```yaml neutral: нейтральный positive: позитивный negative: негативный ``` ## Usage ```python from transformers import pipeline model = pipeline(model="seara/rubert-tiny2-russian-sentiment") model("Привет, ты мне нравишься!") # [{'label': 'positive', 'score': 0.9398769736289978}] ```