--- license: apache-2.0 model-index: - name: Tess-3-Mistral-Nemo-12B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 33.55 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 28.04 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 4.68 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.11 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.49 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 17.39 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Tess-3-Mistral-Nemo-12B name: Open LLM Leaderboard --- ![Tesoro](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png) Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series created by [Migel Tissera](https://x.com/migtissera). The compute for this model was generously sponsored by [KindoAI](https://kindo.ai). # Sample Inference Python Script: ```python import torch, json from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "migtissera/Tess-3-Llama-3.1-405B" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", load_in_4bit=True, trust_remote_code=False, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False) terminators = [tokenizer.convert_tokens_to_ids("<|im_end|>")] def generate_text(instruction): tokens = tokenizer.encode(instruction) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to("cuda") instance = { "input_ids": tokens, "top_p": 1.0, "temperature": 0.75, "generate_len": 2048, "top_k": 50, } length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length + instance["generate_len"], use_cache=True, do_sample=True, top_p=instance["top_p"], temperature=instance["temperature"], top_k=instance["top_k"], num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, eos_token_id=terminators, ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f"{string}" conversation = f"""<|im_start|>system\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|im_end|>\n<|im_start|>user\n""" while True: user_input = input("You: ") llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n" answer = generate_text(llm_prompt) print(answer) conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n" ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_migtissera__Tess-3-Mistral-Nemo-12B) | Metric |Value| |-------------------|----:| |Avg. |16.54| |IFEval (0-Shot) |33.55| |BBH (3-Shot) |28.04| |MATH Lvl 5 (4-Shot)| 4.68| |GPQA (0-shot) | 0.11| |MuSR (0-shot) |15.49| |MMLU-PRO (5-shot) |17.39|