svanhvit's picture
adding classification model
4fa6f33
raw
history blame
460 Bytes
from transformers import pipeline
model="/data/scratch/svanhvit/byt5/byt5-base-gec-and-ged-iec-ckpt-550K-is_err-to-is_corr-max-len-512-bz-4-lr-1e-05/checkpoint-70000"
gec_pipeline = pipeline(
'text2text-generation',
model=model,
tokenizer="google/byt5-base"
)
while True:
sentence = input("Skrifaðu setningu til að flokka: " + "\n")
print(gec_pipeline("has_error " + sentence.strip(), max_length=512)[0]["generated_text"] + "\n")