jpcorb20 commited on
Commit
c5c7443
·
verified ·
1 Parent(s): 48f8625

Delete modeling_phi3.py

Browse files
Files changed (1) hide show
  1. modeling_phi3.py +0 -1570
modeling_phi3.py DELETED
@@ -1,1570 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """ PyTorch Phi-3 model."""
17
-
18
- import inspect
19
- import math
20
- import warnings
21
- from typing import List, Optional, Tuple, Union
22
-
23
- import torch
24
- import torch.nn.functional as F
25
- import torch.utils.checkpoint
26
- from torch import nn
27
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
-
29
- from transformers.activations import ACT2FN
30
- from transformers.cache_utils import Cache, DynamicCache
31
- from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
- from transformers.modeling_outputs import (
33
- BaseModelOutputWithPast,
34
- CausalLMOutputWithPast,
35
- SequenceClassifierOutputWithPast,
36
- TokenClassifierOutput,
37
- )
38
- from transformers.modeling_utils import PreTrainedModel
39
- from transformers.utils import (
40
- add_code_sample_docstrings,
41
- add_start_docstrings,
42
- add_start_docstrings_to_model_forward,
43
- is_flash_attn_2_available,
44
- is_flash_attn_greater_or_equal_2_10,
45
- logging,
46
- replace_return_docstrings,
47
- )
48
- from .configuration_phi3 import Phi3Config
49
-
50
-
51
- logger = logging.get_logger(__name__)
52
-
53
- # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
54
- # if is_flash_attn_2_available():
55
- _flash_supports_window_size = False
56
- try:
57
- from flash_attn import flash_attn_func, flash_attn_varlen_func
58
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
-
60
- _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
61
- except ImportError as error:
62
- logger.warning(
63
- f"`flash-attention` package not found, consider installing for better performance: {error}."
64
- )
65
- if not _flash_supports_window_size:
66
- logger.warning(
67
- "Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
68
- )
69
-
70
- _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
71
- _CONFIG_FOR_DOC = "Phi3Config"
72
-
73
- PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
74
- "microsoft/Phi-3-mini-4k-instruct",
75
- "microsoft/Phi-3-mini-128k-instruct",
76
- # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
77
- ]
78
-
79
-
80
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
81
- class Phi3RMSNorm(nn.Module):
82
- def __init__(self, hidden_size, eps=1e-6):
83
- """
84
- Phi3RMSNorm is equivalent to T5LayerNorm
85
- """
86
- super().__init__()
87
- self.weight = nn.Parameter(torch.ones(hidden_size))
88
- self.variance_epsilon = eps
89
-
90
- def forward(self, hidden_states):
91
- input_dtype = hidden_states.dtype
92
- hidden_states = hidden_states.to(torch.float32)
93
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
- return self.weight * hidden_states.to(input_dtype)
96
-
97
-
98
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
99
- def _get_unpad_data(attention_mask):
100
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
101
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
102
- max_seqlen_in_batch = seqlens_in_batch.max().item()
103
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
104
- return (
105
- indices,
106
- cu_seqlens,
107
- max_seqlen_in_batch,
108
- )
109
-
110
-
111
- # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
112
- class Phi3RotaryEmbedding(nn.Module):
113
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
114
- super().__init__()
115
-
116
- self.dim = dim
117
- self.max_position_embeddings = max_position_embeddings
118
- self.base = base
119
- self.register_buffer("inv_freq", None, persistent=False)
120
-
121
- @torch.no_grad()
122
- def forward(self, x, position_ids, seq_len=None):
123
- # x: [bs, num_attention_heads, seq_len, head_size]
124
- if self.inv_freq is None:
125
- self.inv_freq = 1.0 / (
126
- self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
127
- )
128
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
129
- position_ids_expanded = position_ids[:, None, :].float()
130
- # Force float32 since bfloat16 loses precision on long contexts
131
- # See https://github.com/huggingface/transformers/pull/29285
132
- device_type = x.device.type
133
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
134
- with torch.autocast(device_type=device_type, enabled=False):
135
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
136
- emb = torch.cat((freqs, freqs), dim=-1)
137
- cos = emb.cos()
138
- sin = emb.sin()
139
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
140
-
141
-
142
- class Phi3LongRoPEScaledRotaryEmbedding(Phi3RotaryEmbedding):
143
- def __init__(self, dim, config, device=None):
144
- super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
145
-
146
- self.short_factor = config.rope_scaling["short_factor"]
147
- self.long_factor = config.rope_scaling["long_factor"]
148
- self.original_max_position_embeddings = config.original_max_position_embeddings
149
-
150
- @torch.no_grad()
151
- def forward(self, x, position_ids, seq_len=None):
152
- seq_len = seq_len or torch.max(position_ids) + 1
153
- if seq_len > self.original_max_position_embeddings:
154
- ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
155
- else:
156
- ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
157
-
158
- inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
159
- self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
160
-
161
- inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
162
- position_ids_expanded = position_ids[:, None, :].float()
163
-
164
- # Force float32 since bfloat16 loses precision on long contexts
165
- # See https://github.com/huggingface/transformers/pull/29285
166
- device_type = x.device.type
167
- device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
168
- with torch.autocast(device_type=device_type, enabled=False):
169
- freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
170
- emb = torch.cat((freqs, freqs), dim=-1)
171
-
172
- scale = self.max_position_embeddings / self.original_max_position_embeddings
173
- if scale <= 1.0:
174
- scaling_factor = 1.0
175
- else:
176
- scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
177
-
178
- cos = emb.cos() * scaling_factor
179
- sin = emb.sin() * scaling_factor
180
- return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
181
-
182
-
183
- # Copied from transformers.models.llama.modeling_llama.rotate_half
184
- def rotate_half(x):
185
- """Rotates half the hidden dims of the input."""
186
- x1 = x[..., : x.shape[-1] // 2]
187
- x2 = x[..., x.shape[-1] // 2 :]
188
- return torch.cat((-x2, x1), dim=-1)
189
-
190
-
191
- # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
192
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
193
- """Applies Rotary Position Embedding to the query and key tensors.
194
-
195
- Args:
196
- q (`torch.Tensor`): The query tensor.
197
- k (`torch.Tensor`): The key tensor.
198
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
199
- sin (`torch.Tensor`): The sine part of the rotary embedding.
200
- position_ids (`torch.Tensor`, *optional*):
201
- Deprecated and unused.
202
- unsqueeze_dim (`int`, *optional*, defaults to 1):
203
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
204
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
205
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
206
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
207
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
208
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
209
- Returns:
210
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
211
- """
212
- cos = cos.unsqueeze(unsqueeze_dim)
213
- sin = sin.unsqueeze(unsqueeze_dim)
214
- q_embed = (q * cos) + (rotate_half(q) * sin)
215
- k_embed = (k * cos) + (rotate_half(k) * sin)
216
- return q_embed, k_embed
217
-
218
-
219
- class Phi3MLP(nn.Module):
220
- def __init__(self, config):
221
- super().__init__()
222
-
223
- self.config = config
224
- self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
225
- self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
226
-
227
- self.activation_fn = ACT2FN[config.hidden_act]
228
-
229
- def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
230
- up_states = self.gate_up_proj(hidden_states)
231
-
232
- gate, up_states = up_states.chunk(2, dim=-1)
233
- up_states = up_states * self.activation_fn(gate)
234
-
235
- return self.down_proj(up_states)
236
-
237
-
238
- # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
239
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
240
- """
241
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
242
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
243
- """
244
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
245
- if n_rep == 1:
246
- return hidden_states
247
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
248
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
249
-
250
-
251
- class Phi3Attention(nn.Module):
252
- """Multi-headed attention from 'Attention Is All You Need' paper"""
253
-
254
- def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
255
- super().__init__()
256
- self.config = config
257
- self.layer_idx = layer_idx
258
- if layer_idx is None:
259
- logger.warning_once(
260
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
261
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
262
- "when creating this class."
263
- )
264
-
265
- self.attention_dropout = config.attention_dropout
266
- self.hidden_size = config.hidden_size
267
- self.num_heads = config.num_attention_heads
268
- self.head_dim = self.hidden_size // self.num_heads
269
- self.num_key_value_heads = config.num_key_value_heads
270
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
271
- self.max_position_embeddings = config.max_position_embeddings
272
- self.original_max_position_embeddings = config.original_max_position_embeddings
273
- self.rope_theta = config.rope_theta
274
- self.rope_scaling = config.rope_scaling
275
- self.is_causal = True
276
-
277
- if (self.head_dim * self.num_heads) != self.hidden_size:
278
- raise ValueError(
279
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
280
- f" and `num_heads`: {self.num_heads})."
281
- )
282
-
283
- op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
284
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
285
- self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
286
- self._init_rope()
287
-
288
- def _init_rope(self):
289
- if self.rope_scaling is None:
290
- self.rotary_emb = Phi3RotaryEmbedding(
291
- self.head_dim,
292
- max_position_embeddings=self.max_position_embeddings,
293
- base=self.rope_theta,
294
- )
295
- else:
296
- scaling_type = self.config.rope_scaling["type"]
297
- if scaling_type == "longrope":
298
- self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
299
- else:
300
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
301
-
302
- def forward(
303
- self,
304
- hidden_states: torch.Tensor,
305
- attention_mask: Optional[torch.Tensor] = None,
306
- position_ids: Optional[torch.LongTensor] = None,
307
- past_key_value: Optional[Cache] = None,
308
- output_attentions: bool = False,
309
- use_cache: bool = False,
310
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
311
- logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
312
-
313
- bsz, q_len, _ = hidden_states.size()
314
-
315
- qkv = self.qkv_proj(hidden_states)
316
- query_pos = self.num_heads * self.head_dim
317
- query_states = qkv[..., :query_pos]
318
- key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
319
- value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
320
-
321
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
322
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
324
-
325
- kv_seq_len = key_states.shape[-2]
326
- if past_key_value is not None:
327
- if self.layer_idx is None:
328
- raise ValueError(
329
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
330
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
331
- "with a layer index."
332
- )
333
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
334
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
335
-
336
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
337
-
338
- if past_key_value is not None:
339
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
340
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
341
-
342
- # repeat k/v heads if n_kv_heads < n_heads
343
- key_states = repeat_kv(key_states, self.num_key_value_groups)
344
- value_states = repeat_kv(value_states, self.num_key_value_groups)
345
-
346
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
347
-
348
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
349
- raise ValueError(
350
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
351
- f" {attn_weights.size()}"
352
- )
353
-
354
- if attention_mask is not None:
355
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
356
- raise ValueError(
357
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
358
- )
359
- attn_weights = attn_weights + attention_mask
360
-
361
- # upcast attention to fp32
362
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
363
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
364
-
365
- attn_output = torch.matmul(attn_weights, value_states)
366
-
367
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
368
- raise ValueError(
369
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
370
- f" {attn_output.size()}"
371
- )
372
-
373
- attn_output = attn_output.transpose(1, 2).contiguous()
374
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
375
-
376
- attn_output = self.o_proj(attn_output)
377
-
378
- if not output_attentions:
379
- attn_weights = None
380
-
381
- return attn_output, attn_weights, past_key_value
382
-
383
-
384
- class Phi3FlashAttention2(Phi3Attention):
385
- """
386
- Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
387
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
388
- flash attention and deal with padding tokens in case the input contains any of them.
389
- """
390
-
391
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
392
- def __init__(self, *args, **kwargs):
393
- super().__init__(*args, **kwargs)
394
-
395
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
396
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
397
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
398
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
399
-
400
- def forward(
401
- self,
402
- hidden_states: torch.Tensor,
403
- attention_mask: Optional[torch.LongTensor] = None,
404
- position_ids: Optional[torch.LongTensor] = None,
405
- past_key_value: Optional[Cache] = None,
406
- output_attentions: bool = False,
407
- use_cache: bool = False,
408
- **kwargs,
409
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
410
- # Phi3FlashAttention2 attention does not support output_attentions
411
-
412
- if not _flash_supports_window_size:
413
- logger.warning_once(
414
- "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
415
- )
416
- raise ValueError("The current flash attention version does not support sliding window attention.")
417
-
418
- output_attentions = False
419
-
420
- if "padding_mask" in kwargs:
421
- warnings.warn(
422
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
423
- )
424
-
425
- # overwrite attention_mask with padding_mask
426
- attention_mask = kwargs.pop("padding_mask")
427
-
428
- bsz, q_len, _ = hidden_states.size()
429
-
430
- qkv = self.qkv_proj(hidden_states)
431
- query_pos = self.num_heads * self.head_dim
432
- query_states = qkv[..., :query_pos]
433
- key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
434
- value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
435
-
436
- # Flash attention requires the input to have the shape
437
- # batch_size x seq_length x head_dim x hidden_dim
438
- # therefore we just need to keep the original shape
439
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
440
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
441
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
442
-
443
- kv_seq_len = key_states.shape[-2]
444
- if past_key_value is not None:
445
- if self.layer_idx is None:
446
- raise ValueError(
447
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
448
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
449
- "with a layer index."
450
- )
451
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
452
-
453
- # Because the input can be padded, the absolute sequence length depends on the max position id.
454
- rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item() + 1)
455
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
456
-
457
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
458
-
459
- use_sliding_windows = (
460
- _flash_supports_window_size
461
- and getattr(self.config, "sliding_window", None) is not None
462
- and kv_seq_len > self.config.sliding_window
463
- )
464
-
465
- if past_key_value is not None:
466
- # Activate slicing cache only if the config has a value `sliding_windows` attribute
467
- cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
468
- if (
469
- getattr(self.config, "sliding_window", None) is not None
470
- and kv_seq_len > self.config.sliding_window
471
- and cache_has_contents
472
- ):
473
- slicing_tokens = 1 - self.config.sliding_window
474
-
475
- past_key = past_key_value[self.layer_idx][0]
476
- past_value = past_key_value[self.layer_idx][1]
477
-
478
- past_key = past_key[:, :, slicing_tokens:, :].contiguous()
479
- past_value = past_value[:, :, slicing_tokens:, :].contiguous()
480
-
481
- if past_key.shape[-2] != self.config.sliding_window - 1:
482
- raise ValueError(
483
- f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
484
- f" {past_key.shape}"
485
- )
486
-
487
- if attention_mask is not None:
488
- attention_mask = attention_mask[:, slicing_tokens:]
489
- attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
490
-
491
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
492
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
493
-
494
- # repeat k/v heads if n_kv_heads < n_heads
495
- key_states = repeat_kv(key_states, self.num_key_value_groups)
496
- value_states = repeat_kv(value_states, self.num_key_value_groups)
497
-
498
- attn_dropout = self.attention_dropout if self.training else 0.0
499
-
500
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
501
- # therefore the input hidden states gets silently casted in float32. Hence, we need
502
- # cast them back in the correct dtype just to be sure everything works as expected.
503
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
504
- # in fp32.
505
-
506
- if query_states.dtype == torch.float32:
507
- if torch.is_autocast_enabled():
508
- target_dtype = torch.get_autocast_gpu_dtype()
509
- # Handle the case where the model is quantized
510
- elif hasattr(self.config, "_pre_quantization_dtype"):
511
- target_dtype = self.config._pre_quantization_dtype
512
- else:
513
- target_dtype = self.qkv_proj.weight.dtype
514
-
515
- logger.warning_once(
516
- f"The input hidden states seems to be silently casted in float32, this might be related to"
517
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
518
- f" {target_dtype}."
519
- )
520
-
521
- query_states = query_states.to(target_dtype)
522
- key_states = key_states.to(target_dtype)
523
- value_states = value_states.to(target_dtype)
524
-
525
- # Reashape to the expected shape for Flash Attention
526
- query_states = query_states.transpose(1, 2)
527
- key_states = key_states.transpose(1, 2)
528
- value_states = value_states.transpose(1, 2)
529
-
530
- attn_output = self._flash_attention_forward(
531
- query_states,
532
- key_states,
533
- value_states,
534
- attention_mask,
535
- q_len,
536
- dropout=attn_dropout,
537
- use_sliding_windows=use_sliding_windows,
538
- )
539
-
540
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
541
- attn_output = self.o_proj(attn_output)
542
-
543
- if not output_attentions:
544
- attn_weights = None
545
-
546
- return attn_output, attn_weights, past_key_value
547
-
548
- # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
549
- def _flash_attention_forward(
550
- self,
551
- query_states,
552
- key_states,
553
- value_states,
554
- attention_mask,
555
- query_length,
556
- dropout=0.0,
557
- softmax_scale=None,
558
- use_sliding_windows=False,
559
- ):
560
- """
561
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
562
- first unpad the input, then computes the attention scores and pad the final attention scores.
563
-
564
- Args:
565
- query_states (`torch.Tensor`):
566
- Input query states to be passed to Flash Attention API
567
- key_states (`torch.Tensor`):
568
- Input key states to be passed to Flash Attention API
569
- value_states (`torch.Tensor`):
570
- Input value states to be passed to Flash Attention API
571
- attention_mask (`torch.Tensor`):
572
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
573
- position of padding tokens and 1 for the position of non-padding tokens.
574
- dropout (`float`):
575
- Attention dropout
576
- softmax_scale (`float`, *optional*):
577
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
578
- use_sliding_windows (`bool`, *optional*):
579
- Whether to activate sliding window attention.
580
- """
581
- if not self._flash_attn_uses_top_left_mask:
582
- causal = self.is_causal
583
- else:
584
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
585
- causal = self.is_causal and query_length != 1
586
-
587
- # Contains at least one padding token in the sequence
588
- if attention_mask is not None:
589
- batch_size = query_states.shape[0]
590
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
591
- query_states, key_states, value_states, attention_mask, query_length
592
- )
593
-
594
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
595
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
596
-
597
- if not use_sliding_windows:
598
- attn_output_unpad = flash_attn_varlen_func(
599
- query_states,
600
- key_states,
601
- value_states,
602
- cu_seqlens_q=cu_seqlens_q,
603
- cu_seqlens_k=cu_seqlens_k,
604
- max_seqlen_q=max_seqlen_in_batch_q,
605
- max_seqlen_k=max_seqlen_in_batch_k,
606
- dropout_p=dropout,
607
- softmax_scale=softmax_scale,
608
- causal=causal,
609
- )
610
- else:
611
- attn_output_unpad = flash_attn_varlen_func(
612
- query_states,
613
- key_states,
614
- value_states,
615
- cu_seqlens_q=cu_seqlens_q,
616
- cu_seqlens_k=cu_seqlens_k,
617
- max_seqlen_q=max_seqlen_in_batch_q,
618
- max_seqlen_k=max_seqlen_in_batch_k,
619
- dropout_p=dropout,
620
- softmax_scale=softmax_scale,
621
- causal=causal,
622
- window_size=(self.config.sliding_window, self.config.sliding_window),
623
- )
624
-
625
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
626
- else:
627
- if not use_sliding_windows:
628
- attn_output = flash_attn_func(
629
- query_states,
630
- key_states,
631
- value_states,
632
- dropout,
633
- softmax_scale=softmax_scale,
634
- causal=causal,
635
- )
636
- else:
637
- attn_output = flash_attn_func(
638
- query_states,
639
- key_states,
640
- value_states,
641
- dropout,
642
- softmax_scale=softmax_scale,
643
- causal=causal,
644
- window_size=(self.config.sliding_window, self.config.sliding_window),
645
- )
646
-
647
- return attn_output
648
-
649
- # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
650
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
651
- batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
652
-
653
- # On the first iteration we need to properly re-create the padding mask
654
- # by slicing it on the proper place
655
- if kv_seq_len != attention_mask.shape[-1]:
656
- attention_mask_num_tokens = attention_mask.shape[-1]
657
- attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
658
-
659
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
660
-
661
- key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
662
- value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
663
-
664
- if query_length == kv_seq_len:
665
- query_layer = index_first_axis(
666
- query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
667
- )
668
- cu_seqlens_q = cu_seqlens_k
669
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
670
- indices_q = indices_k
671
- elif query_length == 1:
672
- max_seqlen_in_batch_q = 1
673
- cu_seqlens_q = torch.arange(
674
- batch_size + 1, dtype=torch.int32, device=query_layer.device
675
- ) # There is a memcpy here, that is very bad.
676
- indices_q = cu_seqlens_q[:-1]
677
- query_layer = query_layer.squeeze(1)
678
- else:
679
- # The -q_len: slice assumes left padding.
680
- attention_mask = attention_mask[:, -query_length:]
681
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
682
-
683
- return (
684
- query_layer,
685
- key_layer,
686
- value_layer,
687
- indices_q,
688
- (cu_seqlens_q, cu_seqlens_k),
689
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
690
- )
691
-
692
-
693
- # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
694
- # TODO @Arthur no longer copied from LLama after static cache
695
- class Phi3SdpaAttention(Phi3Attention):
696
- """
697
- Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
698
- `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
699
- SDPA API.
700
- """
701
-
702
- # Adapted from Phi3Attention.forward
703
- def forward(
704
- self,
705
- hidden_states: torch.Tensor,
706
- attention_mask: Optional[torch.Tensor] = None,
707
- position_ids: Optional[torch.LongTensor] = None,
708
- past_key_value: Optional[Cache] = None,
709
- output_attentions: bool = False,
710
- use_cache: bool = False,
711
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
712
- if output_attentions:
713
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
714
- logger.warning_once(
715
- "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
716
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
717
- )
718
- return super().forward(
719
- hidden_states=hidden_states,
720
- attention_mask=attention_mask,
721
- position_ids=position_ids,
722
- past_key_value=past_key_value,
723
- output_attentions=output_attentions,
724
- use_cache=use_cache,
725
- )
726
-
727
- bsz, q_len, _ = hidden_states.size()
728
-
729
- qkv = self.qkv_proj(hidden_states)
730
- query_pos = self.num_heads * self.head_dim
731
- query_states = qkv[..., :query_pos]
732
- key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
733
- value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
734
-
735
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
736
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
737
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
738
-
739
- kv_seq_len = key_states.shape[-2]
740
- if past_key_value is not None:
741
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
742
- cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
743
-
744
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
745
-
746
- if past_key_value is not None:
747
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
748
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
749
-
750
- key_states = repeat_kv(key_states, self.num_key_value_groups)
751
- value_states = repeat_kv(value_states, self.num_key_value_groups)
752
-
753
- if attention_mask is not None:
754
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
755
- raise ValueError(
756
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
757
- )
758
-
759
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
760
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
761
- if query_states.device.type == "cuda" and attention_mask is not None:
762
- query_states = query_states.contiguous()
763
- key_states = key_states.contiguous()
764
- value_states = value_states.contiguous()
765
-
766
- attn_output = torch.nn.functional.scaled_dot_product_attention(
767
- query_states,
768
- key_states,
769
- value_states,
770
- attn_mask=attention_mask,
771
- dropout_p=self.attention_dropout if self.training else 0.0,
772
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
773
- is_causal=self.is_causal and attention_mask is None and q_len > 1,
774
- )
775
-
776
- attn_output = attn_output.transpose(1, 2).contiguous()
777
- attn_output = attn_output.view(bsz, q_len, self.hidden_size)
778
-
779
- attn_output = self.o_proj(attn_output)
780
-
781
- return attn_output, None, past_key_value
782
-
783
-
784
- PHI3_ATTENTION_CLASSES = {
785
- "eager": Phi3Attention,
786
- "flash_attention_2": Phi3FlashAttention2,
787
- "sdpa": Phi3SdpaAttention,
788
- }
789
-
790
-
791
- class Phi3DecoderLayer(nn.Module):
792
- def __init__(self, config: Phi3Config, layer_idx: int):
793
- super().__init__()
794
-
795
- self.config = config
796
- self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
797
-
798
- self.mlp = Phi3MLP(config)
799
- self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
800
-
801
- self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
802
- self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
803
- self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
804
-
805
- def forward(
806
- self,
807
- hidden_states: torch.Tensor,
808
- attention_mask: Optional[torch.Tensor] = None,
809
- position_ids: Optional[torch.LongTensor] = None,
810
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
811
- output_attentions: Optional[bool] = False,
812
- use_cache: Optional[bool] = False,
813
- **kwargs,
814
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
815
- if "padding_mask" in kwargs:
816
- warnings.warn(
817
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
818
- )
819
- """
820
- Args:
821
- hidden_states (`torch.FloatTensor`):
822
- input to the layer of shape `(batch, seq_len, embed_dim)`
823
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
824
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
825
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
826
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
827
- `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
828
- output_attentions (`bool`, *optional*):
829
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
830
- returned tensors for more detail.
831
- use_cache (`bool`, *optional*):
832
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
833
- (see `past_key_values`).
834
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
835
- """
836
-
837
- residual = hidden_states
838
-
839
- hidden_states = self.input_layernorm(hidden_states)
840
-
841
- # Self Attention
842
- attn_outputs, self_attn_weights, present_key_value = self.self_attn(
843
- hidden_states=hidden_states,
844
- attention_mask=attention_mask,
845
- position_ids=position_ids,
846
- past_key_value=past_key_value,
847
- output_attentions=output_attentions,
848
- use_cache=use_cache,
849
- )
850
-
851
- hidden_states = residual + self.resid_attn_dropout(attn_outputs)
852
-
853
- residual = hidden_states
854
- hidden_states = self.post_attention_layernorm(hidden_states)
855
- hidden_states = self.mlp(hidden_states)
856
- hidden_states = residual + self.resid_mlp_dropout(hidden_states)
857
-
858
- outputs = (hidden_states,)
859
-
860
- if output_attentions:
861
- outputs += (self_attn_weights,)
862
-
863
- if use_cache:
864
- outputs += (present_key_value,)
865
-
866
- return outputs
867
-
868
-
869
- PHI3_START_DOCSTRING = r"""
870
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
871
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
872
- etc.)
873
-
874
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
875
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
876
- and behavior.
877
-
878
- Parameters:
879
- config ([`Phi3Config`]):
880
- Model configuration class with all the parameters of the model. Initializing with a config file does not
881
- load the weights associated with the model, only the configuration. Check out the
882
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
883
- """
884
-
885
-
886
- @add_start_docstrings(
887
- "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
888
- PHI3_START_DOCSTRING,
889
- )
890
- class Phi3PreTrainedModel(PreTrainedModel):
891
- config_class = Phi3Config
892
- base_model_prefix = "model"
893
- supports_gradient_checkpointing = True
894
- _no_split_modules = ["Phi3DecoderLayer"]
895
- _skip_keys_device_placement = "past_key_values"
896
- _supports_flash_attn_2 = True
897
- _supports_sdpa = False
898
- _supports_cache_class = True
899
-
900
- _version = "0.0.5"
901
-
902
- def _init_weights(self, module):
903
- std = self.config.initializer_range
904
- if isinstance(module, nn.Linear):
905
- module.weight.data.normal_(mean=0.0, std=std)
906
- if module.bias is not None:
907
- module.bias.data.zero_()
908
- elif isinstance(module, nn.Embedding):
909
- module.weight.data.normal_(mean=0.0, std=std)
910
- if module.padding_idx is not None:
911
- module.weight.data[module.padding_idx].zero_()
912
-
913
-
914
- PHI3_INPUTS_DOCSTRING = r"""
915
- Args:
916
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
917
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
918
- it.
919
-
920
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
921
- [`PreTrainedTokenizer.__call__`] for details.
922
-
923
- [What are input IDs?](../glossary#input-ids)
924
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
925
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
926
-
927
- - 1 for tokens that are **not masked**,
928
- - 0 for tokens that are **masked**.
929
-
930
- [What are attention masks?](../glossary#attention-mask)
931
-
932
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
933
- [`PreTrainedTokenizer.__call__`] for details.
934
-
935
- If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
936
- `past_key_values`).
937
-
938
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
939
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
940
- information on the default strategy.
941
-
942
- - 1 indicates the head is **not masked**,
943
- - 0 indicates the head is **masked**.
944
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
945
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
946
- config.n_positions - 1]`.
947
-
948
- [What are position IDs?](../glossary#position-ids)
949
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
950
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
951
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
952
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
953
-
954
- Two formats are allowed:
955
- - a [`~cache_utils.Cache`] instance;
956
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
957
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
958
- cache format.
959
-
960
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
961
- legacy cache format will be returned.
962
-
963
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
964
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
965
- of shape `(batch_size, sequence_length)`.
966
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
967
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
968
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
969
- model's internal embedding lookup matrix.
970
- use_cache (`bool`, *optional*):
971
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
972
- `past_key_values`).
973
- output_attentions (`bool`, *optional*):
974
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
975
- tensors for more detail.
976
- output_hidden_states (`bool`, *optional*):
977
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
978
- more detail.
979
- return_dict (`bool`, *optional*):
980
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
981
- """
982
-
983
-
984
- @add_start_docstrings(
985
- "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
986
- PHI3_START_DOCSTRING,
987
- )
988
- class Phi3Model(Phi3PreTrainedModel):
989
- """
990
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
991
-
992
- Args:
993
- config: Phi3Config
994
- """
995
-
996
- def __init__(self, config: Phi3Config):
997
- super().__init__(config)
998
- self.padding_idx = config.pad_token_id
999
- self.vocab_size = config.vocab_size
1000
-
1001
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1002
- self.embed_dropout = nn.Dropout(config.embd_pdrop)
1003
- self.layers = nn.ModuleList(
1004
- [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1005
- )
1006
- self._attn_implementation = config._attn_implementation
1007
- self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1008
-
1009
- self.gradient_checkpointing = False
1010
- # Initialize weights and apply final processing
1011
- self.post_init()
1012
-
1013
- def get_input_embeddings(self):
1014
- return self.embed_tokens
1015
-
1016
- def set_input_embeddings(self, value):
1017
- self.embed_tokens = value
1018
-
1019
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1020
- def forward(
1021
- self,
1022
- input_ids: torch.LongTensor = None,
1023
- attention_mask: Optional[torch.Tensor] = None,
1024
- position_ids: Optional[torch.LongTensor] = None,
1025
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1026
- inputs_embeds: Optional[torch.FloatTensor] = None,
1027
- use_cache: Optional[bool] = None,
1028
- output_attentions: Optional[bool] = None,
1029
- output_hidden_states: Optional[bool] = None,
1030
- return_dict: Optional[bool] = None,
1031
- ) -> Union[Tuple, BaseModelOutputWithPast]:
1032
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1033
- output_hidden_states = (
1034
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1035
- )
1036
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1037
-
1038
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1039
-
1040
- # retrieve input_ids and inputs_embeds
1041
- if input_ids is not None and inputs_embeds is not None:
1042
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1043
- elif input_ids is not None:
1044
- batch_size, seq_length = input_ids.shape[:2]
1045
- elif inputs_embeds is not None:
1046
- batch_size, seq_length = inputs_embeds.shape[:2]
1047
- else:
1048
- raise ValueError("You have to specify either input_ids or inputs_embeds")
1049
-
1050
- past_key_values_length = 0
1051
-
1052
- if self.gradient_checkpointing and self.training:
1053
- if use_cache:
1054
- logger.warning_once(
1055
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1056
- )
1057
- use_cache = False
1058
-
1059
- if use_cache:
1060
- use_legacy_cache = not isinstance(past_key_values, Cache)
1061
- if use_legacy_cache:
1062
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1063
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1064
-
1065
- if position_ids is None:
1066
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1067
- position_ids = torch.arange(
1068
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1069
- )
1070
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1071
- else:
1072
- position_ids = position_ids.view(-1, seq_length).long()
1073
-
1074
- if inputs_embeds is None:
1075
- inputs_embeds = self.embed_tokens(input_ids)
1076
-
1077
- if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1078
- is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1079
- if is_padding_right:
1080
- raise ValueError(
1081
- "You are attempting to perform batched generation with padding_side='right'"
1082
- " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1083
- " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1084
- )
1085
-
1086
- if self._attn_implementation == "flash_attention_2":
1087
- # 2d mask is passed through the layers
1088
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1089
- else:
1090
- # 4d mask is passed through the layers
1091
- attention_mask = _prepare_4d_causal_attention_mask(
1092
- attention_mask,
1093
- (batch_size, seq_length),
1094
- inputs_embeds,
1095
- past_key_values_length,
1096
- sliding_window=self.config.sliding_window,
1097
- )
1098
-
1099
- hidden_states = inputs_embeds
1100
-
1101
- # decoder layers
1102
- all_hidden_states = () if output_hidden_states else None
1103
- all_self_attns = () if output_attentions else None
1104
- next_decoder_cache = None
1105
-
1106
- for decoder_layer in self.layers:
1107
- if output_hidden_states:
1108
- all_hidden_states += (hidden_states,)
1109
-
1110
- if self.gradient_checkpointing and self.training:
1111
- layer_outputs = self._gradient_checkpointing_func(
1112
- decoder_layer.__call__,
1113
- hidden_states,
1114
- attention_mask,
1115
- position_ids,
1116
- past_key_values,
1117
- output_attentions,
1118
- use_cache,
1119
- )
1120
- else:
1121
- layer_outputs = decoder_layer(
1122
- hidden_states,
1123
- attention_mask=attention_mask,
1124
- position_ids=position_ids,
1125
- past_key_value=past_key_values,
1126
- output_attentions=output_attentions,
1127
- use_cache=use_cache,
1128
- )
1129
-
1130
- hidden_states = layer_outputs[0]
1131
-
1132
- if use_cache:
1133
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1134
-
1135
- if output_attentions:
1136
- all_self_attns += (layer_outputs[1],)
1137
-
1138
- hidden_states = self.norm(hidden_states)
1139
-
1140
- # add hidden states from the last decoder layer
1141
- if output_hidden_states:
1142
- all_hidden_states += (hidden_states,)
1143
-
1144
- next_cache = None
1145
- if use_cache:
1146
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1147
- if not return_dict:
1148
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1149
- return BaseModelOutputWithPast(
1150
- last_hidden_state=hidden_states,
1151
- past_key_values=next_cache,
1152
- hidden_states=all_hidden_states,
1153
- attentions=all_self_attns,
1154
- )
1155
-
1156
-
1157
- class Phi3ForCausalLM(Phi3PreTrainedModel):
1158
- _tied_weights_keys = ["lm_head.weight"]
1159
-
1160
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1161
- def __init__(self, config):
1162
- super().__init__(config)
1163
- self.model = Phi3Model(config)
1164
- self.vocab_size = config.vocab_size
1165
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1166
-
1167
- # Initialize weights and apply final processing
1168
- self.post_init()
1169
-
1170
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1171
- def get_input_embeddings(self):
1172
- return self.model.embed_tokens
1173
-
1174
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1175
- def set_input_embeddings(self, value):
1176
- self.model.embed_tokens = value
1177
-
1178
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1179
- def get_output_embeddings(self):
1180
- return self.lm_head
1181
-
1182
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1183
- def set_output_embeddings(self, new_embeddings):
1184
- self.lm_head = new_embeddings
1185
-
1186
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1187
- def set_decoder(self, decoder):
1188
- self.model = decoder
1189
-
1190
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1191
- def get_decoder(self):
1192
- return self.model
1193
-
1194
- # Ignore copy
1195
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1196
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1197
- def forward(
1198
- self,
1199
- input_ids: torch.LongTensor = None,
1200
- attention_mask: Optional[torch.Tensor] = None,
1201
- position_ids: Optional[torch.LongTensor] = None,
1202
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1203
- inputs_embeds: Optional[torch.FloatTensor] = None,
1204
- labels: Optional[torch.LongTensor] = None,
1205
- use_cache: Optional[bool] = None,
1206
- output_attentions: Optional[bool] = None,
1207
- output_hidden_states: Optional[bool] = None,
1208
- return_dict: Optional[bool] = None,
1209
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1210
- r"""
1211
- Args:
1212
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1213
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1214
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1215
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1216
-
1217
- Returns:
1218
-
1219
- Example:
1220
-
1221
- ```python
1222
- >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1223
-
1224
- >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1225
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1226
-
1227
- >>> prompt = "This is an example script ."
1228
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1229
-
1230
- >>> # Generate
1231
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1232
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1233
- 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1234
- ```"""
1235
-
1236
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1237
- output_hidden_states = (
1238
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1239
- )
1240
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1241
-
1242
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1243
- outputs = self.model(
1244
- input_ids=input_ids,
1245
- attention_mask=attention_mask,
1246
- position_ids=position_ids,
1247
- past_key_values=past_key_values,
1248
- inputs_embeds=inputs_embeds,
1249
- use_cache=use_cache,
1250
- output_attentions=output_attentions,
1251
- output_hidden_states=output_hidden_states,
1252
- return_dict=return_dict,
1253
- )
1254
-
1255
- hidden_states = outputs[0]
1256
- logits = self.lm_head(hidden_states)
1257
- logits = logits.float()
1258
-
1259
- loss = None
1260
- if labels is not None:
1261
- # Shift so that tokens < n predict n
1262
- shift_logits = logits[..., :-1, :].contiguous()
1263
- shift_labels = labels[..., 1:].contiguous()
1264
- # Flatten the tokens
1265
- loss_fct = CrossEntropyLoss()
1266
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1267
- shift_labels = shift_labels.view(-1)
1268
- # Enable model parallelism
1269
- shift_labels = shift_labels.to(shift_logits.device)
1270
- loss = loss_fct(shift_logits, shift_labels)
1271
-
1272
- if not return_dict:
1273
- output = (logits,) + outputs[1:]
1274
- return (loss,) + output if loss is not None else output
1275
-
1276
- return CausalLMOutputWithPast(
1277
- loss=loss,
1278
- logits=logits,
1279
- past_key_values=outputs.past_key_values,
1280
- hidden_states=outputs.hidden_states,
1281
- attentions=outputs.attentions,
1282
- )
1283
-
1284
- # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1285
- def prepare_inputs_for_generation(
1286
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1287
- ):
1288
- # When the first time input length reached long and short factor switching point, enforce re-compute cache
1289
- # It will cause downside of slower at this single token position, however, better than current failure.
1290
- if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1:
1291
- past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2]
1292
- if past_length <= self.config.original_max_position_embeddings:
1293
- past_key_values = None
1294
-
1295
- if past_key_values is not None:
1296
- if isinstance(past_key_values, Cache):
1297
- cache_length = past_key_values.get_seq_length()
1298
- past_length = past_key_values.seen_tokens
1299
- max_cache_length = past_key_values.get_max_length()
1300
- else:
1301
- cache_length = past_length = past_key_values[0][0].shape[2]
1302
- max_cache_length = None
1303
-
1304
- # Keep only the unprocessed tokens:
1305
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1306
- # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1307
- # input)
1308
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1309
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1310
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1311
- # input_ids based on the past_length.
1312
- elif past_length < input_ids.shape[1]:
1313
- input_ids = input_ids[:, past_length:]
1314
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1315
-
1316
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1317
- if (
1318
- max_cache_length is not None
1319
- and attention_mask is not None
1320
- and cache_length + input_ids.shape[1] > max_cache_length
1321
- ):
1322
- attention_mask = attention_mask[:, -max_cache_length:]
1323
-
1324
- position_ids = kwargs.get("position_ids", None)
1325
- if attention_mask is not None and position_ids is None:
1326
- # create position_ids on the fly for batch generation
1327
- position_ids = attention_mask.long().cumsum(-1) - 1
1328
- position_ids.masked_fill_(attention_mask == 0, 1)
1329
- if past_key_values:
1330
- position_ids = position_ids[:, -input_ids.shape[1] :]
1331
-
1332
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1333
- if inputs_embeds is not None and past_key_values is None:
1334
- model_inputs = {"inputs_embeds": inputs_embeds}
1335
- else:
1336
- model_inputs = {"input_ids": input_ids}
1337
-
1338
- model_inputs.update(
1339
- {
1340
- "position_ids": position_ids,
1341
- "past_key_values": past_key_values,
1342
- "use_cache": kwargs.get("use_cache"),
1343
- "attention_mask": attention_mask,
1344
- }
1345
- )
1346
- return model_inputs
1347
-
1348
- @staticmethod
1349
- # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1350
- def _reorder_cache(past_key_values, beam_idx):
1351
- reordered_past = ()
1352
- for layer_past in past_key_values:
1353
- reordered_past += (
1354
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1355
- )
1356
- return reordered_past
1357
-
1358
-
1359
- @add_start_docstrings(
1360
- """
1361
- The [`Phi3Model`] with a sequence classification head on top (linear layer).
1362
-
1363
- [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1364
- (e.g. GPT-2) do.
1365
-
1366
- Since it does classification on the last token, it requires to know the position of the last token. If a
1367
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1368
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1369
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1370
- each row of the batch).
1371
- """,
1372
- PHI3_START_DOCSTRING,
1373
- )
1374
- # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1375
- class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1376
- def __init__(self, config):
1377
- super().__init__(config)
1378
- self.num_labels = config.num_labels
1379
- self.model = Phi3Model(config)
1380
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1381
-
1382
- # Initialize weights and apply final processing
1383
- self.post_init()
1384
-
1385
- def get_input_embeddings(self):
1386
- return self.model.embed_tokens
1387
-
1388
- def set_input_embeddings(self, value):
1389
- self.model.embed_tokens = value
1390
-
1391
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1392
- def forward(
1393
- self,
1394
- input_ids: torch.LongTensor = None,
1395
- attention_mask: Optional[torch.Tensor] = None,
1396
- position_ids: Optional[torch.LongTensor] = None,
1397
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1398
- inputs_embeds: Optional[torch.FloatTensor] = None,
1399
- labels: Optional[torch.LongTensor] = None,
1400
- use_cache: Optional[bool] = None,
1401
- output_attentions: Optional[bool] = None,
1402
- output_hidden_states: Optional[bool] = None,
1403
- return_dict: Optional[bool] = None,
1404
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1405
- r"""
1406
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1407
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1408
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1409
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1410
- """
1411
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1412
-
1413
- model_outputs = self.model(
1414
- input_ids,
1415
- attention_mask=attention_mask,
1416
- position_ids=position_ids,
1417
- past_key_values=past_key_values,
1418
- inputs_embeds=inputs_embeds,
1419
- use_cache=use_cache,
1420
- output_attentions=output_attentions,
1421
- output_hidden_states=output_hidden_states,
1422
- return_dict=return_dict,
1423
- )
1424
- hidden_states = model_outputs[0]
1425
- logits = self.score(hidden_states)
1426
-
1427
- if input_ids is not None:
1428
- batch_size = input_ids.shape[0]
1429
- else:
1430
- batch_size = inputs_embeds.shape[0]
1431
-
1432
- if self.config.pad_token_id is None and batch_size != 1:
1433
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1434
- if self.config.pad_token_id is None:
1435
- sequence_lengths = -1
1436
- else:
1437
- if input_ids is not None:
1438
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1439
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1440
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
1441
- sequence_lengths = sequence_lengths.to(logits.device)
1442
- else:
1443
- sequence_lengths = -1
1444
-
1445
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1446
-
1447
- loss = None
1448
- if labels is not None:
1449
- labels = labels.to(logits.device)
1450
- if self.config.problem_type is None:
1451
- if self.num_labels == 1:
1452
- self.config.problem_type = "regression"
1453
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1454
- self.config.problem_type = "single_label_classification"
1455
- else:
1456
- self.config.problem_type = "multi_label_classification"
1457
-
1458
- if self.config.problem_type == "regression":
1459
- loss_fct = MSELoss()
1460
- if self.num_labels == 1:
1461
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1462
- else:
1463
- loss = loss_fct(pooled_logits, labels)
1464
- elif self.config.problem_type == "single_label_classification":
1465
- loss_fct = CrossEntropyLoss()
1466
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1467
- elif self.config.problem_type == "multi_label_classification":
1468
- loss_fct = BCEWithLogitsLoss()
1469
- loss = loss_fct(pooled_logits, labels)
1470
- if not return_dict:
1471
- output = (pooled_logits,) + model_outputs[1:]
1472
- return ((loss,) + output) if loss is not None else output
1473
-
1474
- return SequenceClassifierOutputWithPast(
1475
- loss=loss,
1476
- logits=pooled_logits,
1477
- past_key_values=model_outputs.past_key_values,
1478
- hidden_states=model_outputs.hidden_states,
1479
- attentions=model_outputs.attentions,
1480
- )
1481
-
1482
-
1483
- @add_start_docstrings(
1484
- """
1485
- [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1486
- Named-Entity-Recognition (NER) tasks.
1487
- """,
1488
- PHI3_START_DOCSTRING,
1489
- )
1490
- # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1491
- class Phi3ForTokenClassification(Phi3PreTrainedModel):
1492
- def __init__(self, config: Phi3Config):
1493
- super().__init__(config)
1494
- self.num_labels = config.num_labels
1495
-
1496
- self.model = Phi3Model(config)
1497
- if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1498
- classifier_dropout = config.classifier_dropout
1499
- elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1500
- classifier_dropout = config.hidden_dropout
1501
- else:
1502
- classifier_dropout = 0.1
1503
- self.dropout = nn.Dropout(classifier_dropout)
1504
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1505
-
1506
- # Initialize weights and apply final processing
1507
- self.post_init()
1508
-
1509
- @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1510
- @add_code_sample_docstrings(
1511
- checkpoint=_CHECKPOINT_FOR_DOC,
1512
- output_type=TokenClassifierOutput,
1513
- config_class=_CONFIG_FOR_DOC,
1514
- )
1515
- def forward(
1516
- self,
1517
- input_ids: Optional[torch.LongTensor] = None,
1518
- past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1519
- attention_mask: Optional[torch.Tensor] = None,
1520
- inputs_embeds: Optional[torch.Tensor] = None,
1521
- labels: Optional[torch.Tensor] = None,
1522
- use_cache: Optional[bool] = None,
1523
- output_attentions: Optional[bool] = None,
1524
- output_hidden_states: Optional[bool] = None,
1525
- return_dict: Optional[bool] = None,
1526
- **deprecated_arguments,
1527
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1528
- r"""
1529
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1530
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1531
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1532
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1533
- """
1534
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1535
-
1536
- model_outputs = self.model(
1537
- input_ids,
1538
- past_key_values=past_key_values,
1539
- attention_mask=attention_mask,
1540
- inputs_embeds=inputs_embeds,
1541
- use_cache=use_cache,
1542
- output_attentions=output_attentions,
1543
- output_hidden_states=output_hidden_states,
1544
- return_dict=return_dict,
1545
- )
1546
-
1547
- hidden_states = model_outputs[0]
1548
- hidden_states = self.dropout(hidden_states)
1549
- logits = self.classifier(hidden_states)
1550
-
1551
- loss = None
1552
- if labels is not None:
1553
- # move labels to correct device to enable model parallelism
1554
- labels = labels.to(logits.device)
1555
- batch_size, seq_length = labels.shape
1556
- loss_fct = CrossEntropyLoss()
1557
- loss = loss_fct(
1558
- logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1559
- )
1560
-
1561
- if not return_dict:
1562
- output = (logits,) + model_outputs[2:]
1563
- return ((loss,) + output) if loss is not None else output
1564
-
1565
- return TokenClassifierOutput(
1566
- loss=loss,
1567
- logits=logits,
1568
- hidden_states=model_outputs.hidden_states,
1569
- attentions=model_outputs.attentions,
1570
- )