jw2yang commited on
Commit
5e21a94
·
1 Parent(s): 018fbe3
Files changed (1) hide show
  1. README.md +40 -38
README.md CHANGED
@@ -30,7 +30,7 @@ pipeline_tag: text-generation
30
 
31
  <sup>*</sup> Project lead <sup>†</sup> First authors <sup>‡</sup> Second authors <sup>▽</sup> Leadership
32
 
33
- \[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] &nbsp; \[[Project Page](https://microsoft.github.io/Magma/)\] &nbsp; \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\] &nbsp; \[[Github Repo](https://github.com/microsoft/Magma)\]
34
 
35
  </div>
36
 
@@ -67,6 +67,45 @@ The model is developed by Microsoft and is funded by Microsoft Research. The mod
67
  - **License:** {{ license | default("[More Information Needed]", true)}}
68
  - **Finetuned from model [optional]:** {{ base_model | default("[More Information Needed]", true)}} -->
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ## Intended Uses
71
 
72
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
@@ -141,43 +180,6 @@ For the robotic manipulation task, some mitigation strategies to use for human s
141
  * **Safety Standards and Compliance:** Adhere to established safety standards (e.g., ISO 10218, ISO/TS 15066) for industrial robots and collaborative robots.
142
  * **User Training and Awareness:** Provide comprehensive training for all personnel working around robotic arms to understand their functions, safety features, and emergency procedures. Promote awareness of the potential risks associated with robotic manipulation.
143
 
144
- ## How to Get Started with the Model
145
-
146
- <!-- {{ get_started_code | default("[More Information Needed]", true)}} -->
147
-
148
- Use the code below to get started with the model.
149
-
150
- ```python
151
- from magma.image_processing_magma import MagmaImageProcessor
152
- from magma.processing_magma import MagmaProcessor
153
- from magma.modeling_magma import MagmaForConditionalGeneration
154
-
155
- # Load the model
156
- model_id = "microsoft/Magma-8B"
157
- processor = MagmaProcessor.from_pretrained(model_id, trust_remote_code=True)
158
- model = MagmaForConditionalGeneration.from_pretrained(model_id, device_map="cuda", low_cpu_mem_usage=True)
159
-
160
- # Inference
161
- url = "https://assets-c4akfrf5b4d3f4b7.z01.azurefd.net/assets/2024/04/BMDataViz_661fb89f3845e.png"
162
- image = Image.open(requests.get(url, stream=True).raw)
163
-
164
- convs = [
165
- {"role": "system", "content": "You are agent that can see, talk and act."},
166
- {"role": "user", "content": "<image_start><image><image_end>\nWhat is in this image?"},
167
- ]
168
- prompt = processor.tokenizer.apply_chat_template(convs, tokenize=False, add_generation_prompt=True)
169
- inputs = processor(images=[image], texts=prompt, return_tensors="pt")
170
- inputs = inputs.to("cuda")
171
-
172
- with torch.inference_mode():
173
- generate_ids = model.generate(**inputs, **generation_args)
174
-
175
- generate_ids = generate_ids[:, inputs["input_ids"].shape[-1] :]
176
- response = processor.decode(generate_ids[0], skip_special_tokens=True).strip()
177
-
178
- print(response)
179
- ```
180
-
181
  ## Training Details
182
 
183
  ### Training Data
 
30
 
31
  <sup>*</sup> Project lead <sup>†</sup> First authors <sup>‡</sup> Second authors <sup>▽</sup> Leadership
32
 
33
+ \[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] &nbsp; \[[Project Page](https://microsoft.github.io/Magma/)\] &nbsp; \[[Hugging Face Paper](https://huggingface.co/papers/2502.13130)\] &nbsp; \[[Github Repo](https://github.com/microsoft/Magma)\]
34
 
35
  </div>
36
 
 
67
  - **License:** {{ license | default("[More Information Needed]", true)}}
68
  - **Finetuned from model [optional]:** {{ base_model | default("[More Information Needed]", true)}} -->
69
 
70
+ ## How to Get Started with the Model
71
+
72
+ <!-- {{ get_started_code | default("[More Information Needed]", true)}} -->
73
+
74
+ Use the code below to get started with the model.
75
+
76
+ ```python
77
+ import torch
78
+ from PIL import Image
79
+ import requests
80
+
81
+ from transformers import AutoModelForCausalLM
82
+ from transformers import AutoProcessor
83
+
84
+ # Load the model and processor
85
+ model = AutoModelForCausalLM.from_pretrained("microsoft/Magma-8B", trust_remote_code=True)
86
+ processor = AutoProcessor.from_pretrained("microsoft/Magma-8B", trust_remote_code=True)
87
+
88
+ # Inference
89
+ url = "https://assets-c4akfrf5b4d3f4b7.z01.azurefd.net/assets/2024/04/BMDataViz_661fb89f3845e.png"
90
+ image = Image.open(requests.get(url, stream=True).raw)
91
+
92
+ convs = [
93
+ {"role": "system", "content": "You are agent that can see, talk and act."},
94
+ {"role": "user", "content": "<image_start><image><image_end>\nWhat is in this image?"},
95
+ ]
96
+ prompt = processor.tokenizer.apply_chat_template(convs, tokenize=False, add_generation_prompt=True)
97
+ inputs = processor(images=[image], texts=prompt, return_tensors="pt")
98
+ inputs = inputs.to("cuda")
99
+
100
+ with torch.inference_mode():
101
+ generate_ids = model.generate(**inputs, **generation_args)
102
+
103
+ generate_ids = generate_ids[:, inputs["input_ids"].shape[-1] :]
104
+ response = processor.decode(generate_ids[0], skip_special_tokens=True).strip()
105
+
106
+ print(response)
107
+ ```
108
+
109
  ## Intended Uses
110
 
111
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
180
  * **Safety Standards and Compliance:** Adhere to established safety standards (e.g., ISO 10218, ISO/TS 15066) for industrial robots and collaborative robots.
181
  * **User Training and Awareness:** Provide comprehensive training for all personnel working around robotic arms to understand their functions, safety features, and emergency procedures. Promote awareness of the potential risks associated with robotic manipulation.
182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  ## Training Details
184
 
185
  ### Training Data