File size: 75,623 Bytes
18e9ab4 01ec8bb 18e9ab4 912c4bd 18e9ab4 0583f08 18e9ab4 0583f08 18e9ab4 0583f08 18e9ab4 0583f08 18e9ab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 |
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Magma model."""
import math
import re
import os
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
import torch.distributed as dist
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import ModelOutput
from transformers.utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers import AutoConfig, AutoModelForCausalLM
from .configuration_magma import MagmaConfig
from .image_tower_magma import MagmaImageTower
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MagmaConfig"
@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Magma
class MagmaCausalLMOutputWithPast(ModelOutput):
"""
Base class for Magma causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class MagmaMultiModalProjector(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
dim_vision = {'base': 640, 'large': 768, 'xxlarge': 1024}
vision_backbone = config.get('vision_backbone', 'convnextxxlarge')
vision_backbone_size = vision_backbone.replace('convnext', '')
projector_type = config.get('mm_projector_type', 'linear')
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config['mm_hidden_size'], config['hidden_size'])]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config['hidden_size'], config['hidden_size']))
self.proj = nn.Sequential(*modules)
# define a row seperator
self.row_seperator = nn.Parameter(torch.zeros(1, 1, config['hidden_size']))
if config.get('mm_use_im_start_end', False):
self.img_start_seperator = nn.Parameter(torch.zeros(1, config['hidden_size']))
self.img_end_seperator = nn.Parameter(torch.zeros(1, config['hidden_size']))
def forward(self, x):
return self.proj(x)
MAGMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MagmaConfig`] or [`MagmaVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
MAGMA_START_DOCSTRING,
)
class MagmaPreTrainedModel(PreTrainedModel):
config_class = MagmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MagmaVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
MAGMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`MagmaImageProcessor.__call__`] for details. [`MagmaProcessor`] uses
[`MagmaImageProcessor`] for processing images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
The sizes of the images in the batch, being (height, width) for each image.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The Magma model which consists of a vision backbone and a language model.""",
MAGMA_START_DOCSTRING,
)
class MagmaForCausalLM(MagmaPreTrainedModel):
def __init__(self, config: MagmaConfig):
super().__init__(config)
self.vision_tower = MagmaImageTower(config.vision_config, require_pretrained=False)
config.vision_config['mm_hidden_size'] = config.vision_config['mm_hidden_size'] \
if 'mm_hidden_size' in config.vision_config else self.vision_tower.hidden_size
config.vision_config['hidden_size'] = config.vision_config['hidden_size'] \
if 'hidden_size' in config.vision_config else self.config.text_config.hidden_size
self.multi_modal_projector = MagmaMultiModalProjector(config.vision_config)
self.vocab_size = config.text_config.vocab_size
if hasattr(config.text_config, 'auto_map'):
del config.text_config.auto_map
try:
self.language_model = AutoModelForCausalLM.from_config(
config.text_config,
# attn_implementation=config._attn_implementation,
trust_remote_code=True
)
except:
self.language_model = AutoModelForCausalLM.from_pretrained(
config.text_config._name_or_path,
# attn_implementation=config._attn_implementation,
trust_remote_code=True
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
self.post_init()
# def from_pretrained(self, pretrained_model_name_or_path, *model_args, **kwargs):
# import pdb; pdb.set_trace()
# kwargs["_from_auto"] = True
# return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@property
def padding_side(self):
return self._padding_side
@padding_side.setter
def padding_side(self, padding_side: str):
if padding_side not in ["left", "right"]:
raise ValueError(f"{padding_side} is not `left` or `right`.")
self._padding_side = padding_side
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_input_ids_with_image_features(
self,
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids=None,
labels=None,
image_token_index=None,
ignore_index=-100,
):
"""
Merge input_ids with with image features into final embeddings
Args:
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
All vision vectors of all images in the batch
feature_lens (`torch.LongTensor` of shape `(num_images)`):
The length of visual embeddings of each image as stacked in `image_features`
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
Token embeddings before merging with visual embeddings
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input_ids of tokens, possibly filled with image token
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Mask to avoid performing attention on padding token indices.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
:abels need to be recalculated to support training (if provided)
image_token_index (`int`, *optional*)
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
ignore_index (`int`, *optional*)
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
Returns:
final_embedding, final_attention_mask, position_ids, final_labels
Explanation:
each image has variable length embeddings, with length specified by feature_lens
image_features is concatenation of all visual embed vectors
task: fill each <image> with the correct number of visual embeddings
Example:
X (5 patches), Y (3 patches), Z (8)
X, Y are in the same sequence (in-context learning)
if right padding
input_ids: [
a b c d e f X g h i j k Y l m
o p q r Z s t u v _ _ _ _ _ _
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
]
elif left padding
input_ids: [
a b c d e f X g h i j k Y l m
_ _ _ _ _ _ o p q r Z s t u v
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
]
Edge cases:
* If tokens are same but image token sizes are different, then cannot infer left or right padding
input_ids: [
a b c d X g h
i j Y k l m n
]
where X is 3 tokens while Y is 5, this mean after merge
if left-padding (batched generation)
input_ids should be: [
_ _ a b c d X X X g h
i j Y Y Y Y Y k l m n
]
elif (right padding) (training)
input_ids should be: [
a b c d X X X g h _ _
i j Y Y Y Y Y k l m n
]
"""
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
with torch.no_grad():
num_images = feature_lens.size(0)
num_image_features, embed_dim = image_features.shape
if feature_lens.sum() != num_image_features:
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
batch_size = input_ids.shape[0]
_left_padding = torch.any(attention_mask[:, 0] == 0)
_right_padding = torch.any(attention_mask[:, -1] == 0)
left_padding = True
if batch_size > 1:
if _left_padding and not _right_padding:
left_padding = True
elif not _left_padding and _right_padding:
left_padding = False
elif not _left_padding and not _right_padding:
# both side is 1, so cannot tell
left_padding = self.padding_side == "left"
else:
# invalid attention_mask
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
# Whether to turn off right padding
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == image_token_index
# special_image_token_mask: [bsz, seqlen]
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# num_special_image_tokens: [bsz]
# Reserve for padding of num_images
total_num_special_image_tokens = torch.sum(special_image_token_mask)
if total_num_special_image_tokens != num_images:
raise ValueError(
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
)
# Compute the maximum embed dimension
# max_image_feature_lens is max_feature_lens per batch
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device)
embed_sequence_lengths = (
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
)
max_embed_dim = embed_sequence_lengths.max()
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
# ! instead of special_image_token_mask * (num_image_patches - 1)
# special_image_token_mask * (num_feature_len - 1)
special_image_token_mask = special_image_token_mask.long()
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
if left_padding:
# shift right token positions so that they are ending at the same number
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
final_labels = None
if labels is not None:
# NOTE: this is a bug in the original code!!!
final_labels = torch.full_like(final_attention_mask.long(), ignore_index).to(torch.long)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
with torch.no_grad():
image_to_overwrite = torch.full(
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
)
image_to_overwrite[batch_indices, text_to_overwrite] = False
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
if left_padding:
# exclude padding on the left
val = (max_embed_dim - embed_indices) <= embed_seq_lens
else:
# exclude padding on the right
val = embed_indices < embed_seq_lens
image_to_overwrite &= val
if image_to_overwrite.sum() != num_image_features:
raise ValueError(
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. "
f"This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
return final_embedding, final_attention_mask, position_ids, final_labels
@add_start_docstrings_to_model_forward(MAGMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MagmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: Union[torch.FloatTensor, List[torch.FloatTensor], List[List[torch.FloatTensor]]] = None,
image_sizes: Union[torch.LongTensor, List[torch.LongTensor], List[List[torch.LongTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MagmaCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MagmaForConditionalGeneration
>>> model = MagmaForConditionalGeneration.from_pretrained("microsoft/magma-8b-hf")
>>> processor = AutoProcessor.from_pretrained("microsoft/magma-8b-hf")
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_config['vision_feature_layer']
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if inputs_embeds is None:
# 1. Extract the input embeddings
# In case image_token_index is not in the embeddings (extra token but embedding don't have it)
for_inputs_embeds_ids = input_ids.clone()
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1 and len(pixel_values) > 0:
# ! infer image_num_patches from image_sizes
if type(pixel_values) == list:
# nested list of pixel_values, each element is a list of pixel_values for each training instance, it could be multiple for video or interleaved setting
# e.g., pixel_values = [[img1, img2], [img1, img2, img3]]
n_imgs_per_sample = [len(pv) for pv in pixel_values]
pixels_values_list = sum(pixel_values, [])
image_sizes_list = sum(image_sizes, [])
else:
image_num_patches = [(imsize[imsize.sum(1) > 0,0] * imsize[imsize.sum(1) > 0,1]).tolist() for imsize in image_sizes]
# image_num_patches = [(imsize[:,0]*imsize[:,1]).tolist() for imsize in image_sizes]
# figure out if pixel_values is concatenated or stacked
if pixel_values.dim() == 5:
# stacking when input is (batch_size, num_patches, num_channels, height, width)
_pixel_values_list = [
pix_val[:sum(num_patch)].split(num_patch, dim=0) for pix_val, num_patch in zip(pixel_values, image_num_patches)
]
_image_sizes_list = [image_size[image_size.sum(-1) > 0].tolist() for image_size in image_sizes]
elif pixel_values.dim() != 4:
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
if self.config.vision_config['img_anyres_strategy'] == "global":
selected_image_features = []
# NOTE: both _image_sizes_list and _pixel_values_list are lists of lists, each item represents an training instance with one or multiple images
for idx, (image_size_for_instance, pixel_values_for_instance) in enumerate(zip(_image_sizes_list, _pixel_values_list)):
assert len(image_size_for_instance) == len(pixel_values_for_instance), f"{len(image_size_for_instance)} != {len(pixel_values_for_instance)}"
for image_size, pixel_values_for_image in zip(image_size_for_instance, pixel_values_for_instance):
pixel_values_for_image = pixel_values_for_image.view(image_size[0], image_size[1], *pixel_values_for_image.shape[1:])
pixel_values_for_image = pixel_values_for_image.permute(2, 0, 3, 1, 4).flatten(3, 4).flatten(1, 2).unsqueeze(0)
image_features = self.vision_tower(pixel_values_for_image)
selected_image_feature = image_features[vision_feature_layer][0].permute(1, 2, 0)
selected_image_feature = self.multi_modal_projector(selected_image_feature)
selected_image_feature = torch.cat((selected_image_feature, self.multi_modal_projector.row_seperator.repeat(selected_image_feature.shape[0],1,1)), dim=1)
selected_image_features.append(selected_image_feature.flatten(0, 1))
elif self.config.vision_config['img_anyres_strategy'] == "crop":
# calculate number of crops for each instance in the batch given _image_sizes_list
_image_sizes_list_temp = sum(_image_sizes_list, [])
# concate nate all images in _pixel_values_list
_pixel_values_list_temp = sum(_pixel_values_list, ())
_pixel_values_list_temp = torch.cat(_pixel_values_list_temp, dim=0)
image_features = self.vision_tower(_pixel_values_list_temp)[vision_feature_layer].permute(0, 2, 3, 1)
image_features = self.multi_modal_projector(image_features)
num_crops_list = [_image_size[0]*_image_size[1] for _image_size in _image_sizes_list_temp]
image_features_split = torch.split(image_features, num_crops_list, dim=0)
selected_image_features = []
for image_feature, image_size in zip(image_features_split, _image_sizes_list_temp):
image_feature = image_feature.view(image_size[0], image_size[1], *image_feature.shape[1:])
image_feature = image_feature.permute(0, 2, 1, 3, 4).flatten(2, 3).flatten(0, 1)
image_feature = torch.cat((image_feature, self.multi_modal_projector.row_seperator.repeat(image_feature.shape[0],1,1)), dim=1)
selected_image_features.append(image_feature.flatten(0, 1))
# raise NotImplementedError("crop strategy is not implemented yet")
# image_features = self.vision_tower(pixel_values)
# selected_image_feature = image_features[vision_feature_layer]
# image_features = torch.split(image_features, image_num_patches, dim=0)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
feature_lens = [elem.shape[0] for elem in selected_image_features]
image_features = torch.cat(selected_image_features, 0)
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
# inputs_embeds = inputs_embeds.to(image_features.dtype)
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
labels=labels,
)
# pixel_values is not None but is empty ---> text only cases
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
# there are no images
pass
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_length = input_ids.shape[1]
past_length = first_layer_past_key_value.shape[-1]
extended_attention_mask = torch.ones(
(attention_mask.shape[0], past_length),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
# outputs = self.language_model(
# attention_mask=attention_mask,
# position_ids=position_ids,
# past_key_values=past_key_values,
# inputs_embeds=inputs_embeds,
# use_cache=use_cache,
# output_attentions=output_attentions,
# output_hidden_states=output_hidden_states,
# return_dict=return_dict,
# )
# logits = outputs[0]
# loss = None
# if labels is not None:
# # Shift so that tokens < n predict n
# if attention_mask is not None:
# shift_attention_mask = attention_mask[..., 1:]
# shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
# shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
# else:
# shift_logits = logits[..., :-1, :].contiguous()
# shift_labels = labels[..., 1:].contiguous()
# # Flatten the tokens
# loss_fct = nn.CrossEntropyLoss()
# loss = loss_fct(
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
# )
outputs = self.language_model.model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
loss = None
if labels is not None and self.training:
valid_mask = labels[..., 1:] != -100
shift_logits = self.language_model.lm_head(hidden_states[:,:-1][valid_mask]).contiguous()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
logits = shift_logits # dummy logits
shift_labels = labels[..., 1:][valid_mask].contiguous()
shift_labels = shift_labels.to(shift_logits.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits, shift_labels)
# localize the positions for shift_labels where the id is in betweek [config.tokenizer_vocab_size-256, config.tokenizer_vocab_size]
valid_indices = (shift_labels<self.config.tokenizer_vocab_size) & (shift_labels>=self.config.tokenizer_vocab_size-256)
if valid_indices.sum() > 0:
action_labels = shift_labels[valid_indices]
action_logits = shift_logits[valid_indices]
# calcualte the accuracy
action_accuracy = (action_logits.argmax(-1) == action_labels).float().mean()
# log the action accuracy
else:
action_accuracy = torch.tensor(0.0).to(shift_logits.device)
# torch distributed gather the action accuracy across all devices
action_accuracy = action_accuracy.unsqueeze(0)
# gather the action accuracy across all devices
action_accuracy_gather = [torch.zeros_like(action_accuracy) for _ in range(dist.get_world_size())]
dist.all_gather(action_accuracy_gather, action_accuracy)
# concatenate the action accuracy across all devices
action_accuracy = torch.cat(action_accuracy_gather)
else:
logits = self.language_model.lm_head(hidden_states)
logits = logits.float()
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MagmaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
image_sizes=None,
attention_mask=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"image_sizes": image_sizes,
}
)
return model_inputs
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
@add_start_docstrings(
"""The Magma model which consists of a vision backbone and a language model.""",
MAGMA_START_DOCSTRING,
)
class MagmaForConditionalGeneration(MagmaPreTrainedModel):
def __init__(self, config: MagmaConfig):
super().__init__(config)
self.vision_tower = MagmaImageTower(config.vision_config, require_pretrained=('magma' not in config.name_or_path))
self.multi_modal_projector = MagmaMultiModalProjector(config.vision_config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(
config.text_config,
# attn_implementation=config._attn_implementation,
trust_remote_code=True
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
self.post_init()
@property
def padding_side(self):
return self._padding_side
@padding_side.setter
def padding_side(self, padding_side: str):
if padding_side not in ["left", "right"]:
raise ValueError(f"{padding_side} is not `left` or `right`.")
self._padding_side = padding_side
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_input_ids_with_image_features(
self,
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids=None,
labels=None,
image_token_index=None,
ignore_index=-100,
):
"""
Merge input_ids with with image features into final embeddings
Args:
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
All vision vectors of all images in the batch
feature_lens (`torch.LongTensor` of shape `(num_images)`):
The length of visual embeddings of each image as stacked in `image_features`
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
Token embeddings before merging with visual embeddings
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input_ids of tokens, possibly filled with image token
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Mask to avoid performing attention on padding token indices.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
:abels need to be recalculated to support training (if provided)
image_token_index (`int`, *optional*)
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
ignore_index (`int`, *optional*)
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
Returns:
final_embedding, final_attention_mask, position_ids, final_labels
Explanation:
each image has variable length embeddings, with length specified by feature_lens
image_features is concatenation of all visual embed vectors
task: fill each <image> with the correct number of visual embeddings
Example:
X (5 patches), Y (3 patches), Z (8)
X, Y are in the same sequence (in-context learning)
if right padding
input_ids: [
a b c d e f X g h i j k Y l m
o p q r Z s t u v _ _ _ _ _ _
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
]
elif left padding
input_ids: [
a b c d e f X g h i j k Y l m
_ _ _ _ _ _ o p q r Z s t u v
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
]
Edge cases:
* If tokens are same but image token sizes are different, then cannot infer left or right padding
input_ids: [
a b c d X g h
i j Y k l m n
]
where X is 3 tokens while Y is 5, this mean after merge
if left-padding (batched generation)
input_ids should be: [
_ _ a b c d X X X g h
i j Y Y Y Y Y k l m n
]
elif (right padding) (training)
input_ids should be: [
a b c d X X X g h _ _
i j Y Y Y Y Y k l m n
]
"""
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
with torch.no_grad():
num_images = feature_lens.size(0)
num_image_features, embed_dim = image_features.shape
if feature_lens.sum() != num_image_features:
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
batch_size = input_ids.shape[0]
_left_padding = torch.any(attention_mask[:, 0] == 0)
_right_padding = torch.any(attention_mask[:, -1] == 0)
left_padding = True
if batch_size > 1:
if _left_padding and not _right_padding:
left_padding = True
elif not _left_padding and _right_padding:
left_padding = False
elif not _left_padding and not _right_padding:
# both side is 1, so cannot tell
left_padding = self.padding_side == "left"
else:
# invalid attention_mask
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
# Whether to turn off right padding
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == image_token_index
# special_image_token_mask: [bsz, seqlen]
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# num_special_image_tokens: [bsz]
# Reserve for padding of num_images
total_num_special_image_tokens = torch.sum(special_image_token_mask)
if total_num_special_image_tokens != num_images:
raise ValueError(
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
)
# Compute the maximum embed dimension
# max_image_feature_lens is max_feature_lens per batch
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device)
embed_sequence_lengths = (
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
)
max_embed_dim = embed_sequence_lengths.max()
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
# ! instead of special_image_token_mask * (num_image_patches - 1)
# special_image_token_mask * (num_feature_len - 1)
special_image_token_mask = special_image_token_mask.long()
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
if left_padding:
# shift right token positions so that they are ending at the same number
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
final_labels = None
if labels is not None:
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
with torch.no_grad():
image_to_overwrite = torch.full(
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
)
image_to_overwrite[batch_indices, text_to_overwrite] = False
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
if left_padding:
# exclude padding on the left
val = (max_embed_dim - embed_indices) <= embed_seq_lens
else:
# exclude padding on the right
val = embed_indices < embed_seq_lens
image_to_overwrite &= val
if image_to_overwrite.sum() != num_image_features:
raise ValueError(
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. "
f"This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
return final_embedding, final_attention_mask, position_ids, final_labels
@add_start_docstrings_to_model_forward(MAGMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MagmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MagmaCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MagmaForConditionalGeneration
>>> model = MagmaForConditionalGeneration.from_pretrained("microsoft/magma-8b-hf")
>>> processor = AutoProcessor.from_pretrained("microsoft/magma-8b-hf")
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_config['vision_feature_layer']
)
if inputs_embeds is None:
# 1. Extract the input embeddings
# In case image_token_index is not in the embeddings (extra token but embedding don't have it)
for_inputs_embeds_ids = input_ids.clone()
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
# ! infer image_num_patches from image_sizes
# figure out if pixel_values is concatenated or stacked
if pixel_values.dim() == 5:
image_num_patches = [(imsize[:,0]*imsize[:,1]).tolist() for imsize in image_sizes]
# stacking when input is (batch_size, num_patches, num_channels, height, width)
_pixel_values_list = [
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
]
pixel_values = torch.cat(_pixel_values_list, dim=0)
elif pixel_values.dim() != 4:
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
if self.config.vision_config['img_anyres_strategy'] == "global":
num_patches_for_images = [(imsize[0]*imsize[1]).item() for imsize in image_sizes]
pixel_values_for_images = pixel_values.split(num_patches_for_images, dim=0)
selected_image_features = []
for idx, (image_size, pixel_values_for_image) in enumerate(zip(image_sizes, pixel_values_for_images)):
pixel_values_for_image = pixel_values_for_image.view(image_size[0], image_size[1], *pixel_values_for_image.shape[1:])
pixel_values_for_image = pixel_values_for_image.permute(2, 0, 3, 1, 4).flatten(3, 4).flatten(1, 2).unsqueeze(0)
image_features = self.vision_tower(pixel_values_for_image)
selected_image_feature = image_features[vision_feature_layer][0].permute(1, 2, 0)
selected_image_feature = self.multi_modal_projector(selected_image_feature)
selected_image_feature = torch.cat((selected_image_feature, self.multi_modal_projector.row_seperator.repeat(selected_image_feature.shape[0],1,1)), dim=1)
selected_image_features.append(selected_image_feature)
elif self.config.vision_config['img_anyres_strategy'] == "crop":
image_features = self.vision_tower(pixel_values)[vision_feature_layer].permute(0, 2, 3, 1)
image_features = self.multi_modal_projector(image_features)
num_patches_for_images = [(imsize[0]*imsize[1]).item() for imsize in image_sizes]
image_features_split = torch.split(image_features, num_patches_for_images, dim=0)
selected_image_features = []
for image_feature, image_size in zip(image_features_split, image_sizes):
image_feature = image_feature.view(image_size[0], image_size[1], *image_feature.shape[1:])
image_feature = image_feature.permute(0, 2, 1, 3, 4).flatten(2, 3).flatten(0, 1)
image_feature = torch.cat((image_feature, self.multi_modal_projector.row_seperator.repeat(image_feature.shape[0],1,1)), dim=1)
selected_image_features.append(image_feature)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
feature_lens = [elem.shape[0]*elem.shape[1] for elem in selected_image_features]
image_features = torch.cat([elem.flatten(0, 1) for elem in selected_image_features], 0)
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
# inputs_embeds = inputs_embeds.to(image_features.dtype)
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
labels=labels,
)
# pixel_values is not None but is empty ---> text only cases
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
# there are no images
pass
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
# generation with cache
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
# Retrieve the first layer to inspect the logits and mask out the hidden states
# that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_length = input_ids.shape[1]
past_length = first_layer_past_key_value.shape[-1]
extended_attention_mask = torch.ones(
(attention_mask.shape[0], past_length),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MagmaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
image_sizes=None,
attention_mask=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"image_sizes": image_sizes,
}
)
return model_inputs
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
AutoConfig.register("magma", MagmaConfig)
AutoModelForCausalLM.register(MagmaConfig, MagmaForConditionalGeneration) |