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Abstract

Mixture-of-Experts (MoE) models scale more effectively than dense models
due to sparse computation through expert routing, selectively activating
only a small subset of expert modules. However, sparse computation
challenges traditional training practices, as discrete expert routing hinders
standard backpropagation and thus gradient-based optimization, which
are the cornerstone of deep learning. To better pursue the scaling power
of MoE, we introduce GRIN (GRadient-IN formed MoE training), which
incorporates sparse gradient estimation for expert routing and configures
model parallelism to avoid token dropping. Applying GRIN to autoregressive
language modeling, we develop a top-2 16×3.8B MoE model. Our model,
with only 6.6B activated parameters, outperforms a 7B dense model and
matches the performance of a 14B dense model trained on the same data.
Extensive evaluations across diverse tasks demonstrate the potential of
GRIN to significantly enhance MoE efficacy, achieving 79.4 on MMLU, 83.7
on HellaSwag, 74.4 on HumanEval, and 58.9 on MATH.

1 Introduction

The success of large-scale pre-training highlights the importance of model scalability (OpenAI,
2023; Touvron et al., 2023). Mixture-of-Experts (MoE) models have emerged as a promising
approach, selectively activating only a small subset of modules on specific inputs through an
expert routing process, thus improving the model scalability by orders of magnitude (Lepikhin
et al., 2021; Fedus et al., 2022; Zoph et al., 2022).
However, the sparse activation mechanism of MoE presents several challenges to model
training. For example, while the discrete routing function produces non-differentiable outputs,
backpropagation, the cornerstone of deep learning, is exclusively compatible with differentiable
functions (Rosenblatt, 1957; Bengio et al., 2013). Consequently, backpropagation cannot be
directly applied for gradient computation of expert routing.
To fully leverage the scaling potential of MoE, we study gradient estimation for expert
routing and configure model parallelism to avoid token dropping in this work. Extending
Liu et al. (2023a,b), we propose SparseMixer-v2 to estimate gradient for expert routing,
which differs from conventional practices that use the gating gradient as a proxy for the
routing gradient. Additionally, we propose a scalable MoE training recipe that uses pipeline
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Figure 1: MMLU accuracy and activated parameters.

Parameter Value
General

vocab_size 32064
n_position 4096
n_layers 32
n_embed 4096
normalization LayerNorm

Attention specific
window_size 2048
n_head 32
n_kv_head 8
head_dim 128
rotary_dim 128

Expert specific
activation SwiGLU
inner_dim 6400
n_expert 16
top_k 2
moe_mod every layer

Table 1: GRIN MoE Specifics.

parallelism and tensor parallelism instead of expert parallelism, thus eliminating the needs
of using a capacity factor and dropping tokens during training.
We have applied our method, GRadient-IN formed MoE, to autoregressive language modeling
and developed a 16x3.8B MoE model, referred to as GRIN MoE2. The model incorporates
MoE layers as its feedforward network, conducting top-2 routing among 16 experts at each
layer. Specifically, each expert is implemented as a GLU network and the routing module
selectively activates 2 out of 16 expert networks for each token at each layer. As a result, the
16×3.8B model has 42B parameters in total and 6.6B activated parameters for inference.
Our evaluations across a diverse set of tasks reveal that GRIN MoE achieves exceptionally
good performance, particularly in coding and mathematics tasks. For example, our model
scores 79.4 on MMLU, 74.4 on HumanEval, 80.3 on MBPP, and 58.9 on MATH. GRIN MoE
also compares favorably with dense models trained on the same data. For instance, GRIN
MoE achieves an average score of 79.58 in Table 2, outperforming 7B dense model (average
score of 75.74) and matching the 14B dense model (average score of 78.46) trained on the
same data.
In addition, we have conducted an in-depth analysis to shed light on why GRIN MoE works
well. We show that GRIN MoE can answer sophisticated questions correctly and quickly pick
up on hints, and that GRIN MoE exhibits different expert assignment patterns for different
tasks and domains, indicating that its experts have developed specialized expertise and that
the router can effectively compose these experts.

2 Model Architecture

Similar to existing state-of-the-art MoE models, GRIN MoE is based on a transformer
architecture (Vaswani et al., 2017) with a stack of transformer blocks.
Transformer. The Transformer network is constructed by stacking Transformer blocks,
each consisting of an attention layer and a feedforward layer. Residual connections and layer
normalization are applied to all sub-layers in a Pre-LN manner.

2GRIN MoE weights: https://huggingface.co/microsoft/GRIN-MoE. Note a different version
of mid-training and post-training, emphasizing long context and multilingual ability, has been
conducted and has been released at https://huggingface.co/microsoft/Phi-3.5-MoE-instruct.
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Table 2: Model Performance on Popular Benchmarks
MoE Dense

GPT-3.5
v1106

GPT-4o
2024

Gemini
1.5-FlashGRIN MoE Phi-3.5 Mixtral Phi-3 Mistral Gemma Llama3

16×3.8B 16×3.8B 8×7B 8×22B 14B 7B 7B 7B 8B 70B
MMLU
(5-Shot)

79.4 78.9 70.5 76.2 78.0 75.7 61.7 63.6 66.5 80.2 71.4 86.9 79.4

HellaSwag
(5-Shot)

83.7 83.8 70.4 79.0 82.4 77.0 58.5 49.8 71.1 82.6 78.8 91.7 -

ANLI
(7-Shot)

60.6 59.8 55.2 65.2 55.8 58.1 47.1 48.7 57.3 68.3 58.1 75.7 65.6
GSM-8K
(8-Shot; CoT)

90.4 88.7 64.7 83.8 91.0 89.6 46.4 59.8 77.4 93.5 78.1 93.8 82.4

MedQA
(2-Shot)

70.4 70.5 62.2 67.9 69.9 65.4 50.0 49.6 60.5 78.5 63.4 88.9 -

AGIEval
(0-Shot)

48.2 50.3 45.2 54.0 50.2 45.1 35.1 42.1 42.0 56.9 48.4 37.6 45.2

TriviaQA
(5-Shot)

73.9 71.6 78.5 82.2 73.9 58.1 75.2 72.3 67.7 84.5 85.8 66.0 -
Arc-C
(10-Shot)

92.0 91.0 87.3 91.3 91.6 90.7 78.6 78.3 82.8 93.0 87.4 97.0 88.3

Arc-E
(10-Shot)

98.0 97.1 95.6 96.9 97.7 97.0 90.6 91.4 93.4 98.2 96.3 99.0 97.1

PIQA
(5-Shot)

89.0 88.6 86.0 85.0 87.9 86.9 77.7 78.1 75.7 85.3 86.6 92.9 87.5

SociQA
(5-Shot)

79.5 78.0 75.9 78.2 80.2 79.2 74.6 65.5 73.9 81.1 68.3 81.4 77.8
BigBench-Hard

(3-Shot; CoT)
81.4 79.1 69.7 81.8 81.4 79.1 57.3 59.6 51.5 80.2 68.3 81.2∗ -

WinoGrande
(5-Shot)

81.4 81.3 62.0 75.3 81.5 81.5 54.2 55.6 65.0 83.3 68.8 89.3 74.7

OpenBookQA
(10-Shot)

89.8 89.6 85.8 88.6 87.4 88.0 79.8 78.6 82.6 91.8 86.0 95.2 89.0

BoolQ
(2-Shot)

83.4 84.6 77.6 82.7 86.5 84.8 72.2 66.0 80.9 89.1 79.1 90.6 85.8

CommonSenseQA
(10-Shot) 81.8 83.5 78.1 82.0 82.8 80.0 72.6 76.2 79.0 84.4 79.6 88.5 84.0

TruthfulQA
(10-Shot; MC2)

74.5 77.5 60.1 67.4 75.1 70.2 53.0 52.1 63.2 81.9 85.8 85.6 76.6
HumanEval

(0-Shot)
74.4 70.7 37.8 39.6 62.2 61.0 28.0 34.1 60.4 78.7 62.2 92.1 64.4

MBPP
(3-Shot)

80.3 80.8 60.2 70.7 75.2 71.7 50.8 51.5 67.7 81.3 77.8 90.4 77.5

Average 79.58 79.23 69.62 76.20 78.46 75.74 61.23 61.73 69.40 82.78 75.27 85.70

Attention. Following Mistral (Jiang et al., 2023b), we implement the attention layer
with grouped-query attention (Ainslie et al., 2023) and sliding window attention (Child
et al., 2019). Both techniques are computationally efficient and allow GRIN MoE to attend
information beyond the window size. RoPE is adopted for the position encoding to enable
long context encoding after pretraining(Su et al., 2024). Our implementation is mostly based
on FlashAttention 2 (Dao, 2023).
Mixture of Experts. Different from conventional Transformer models, we construct
the feedforward layer as a Mixture-of-Experts layer, employing a router network to sparsely
activate selected networks for each input.
The idea of MoE is originally discussed in Jacobs et al. (1991) and Jordan & Jacobs (1994),
which integrates separate networks together and uses each to handle a separate subset of
training cases. Recently, many attempts have been made to leverage MoE for scaling large
language models (Shazeer et al., 2017; Lepikhin et al., 2021; Lewis et al., 2021; Kim et al.,
2021; Lepikhin et al., 2021; Fedus et al., 2022; Zoph et al., 2022).
For each MoE layer, the model picks from a set of distinct feedforward networks for every input
tokens, which is determined by a router network. Particularly, given n expert parameters
{w0, · · · , wn−1}, the output of one MoE module for inference is

∑n−1
i=0 Gating(z)i · TopK(z)i · Expert(x, wi), (1)

where z = Router(x, r), r is the router parameters, Gating(·) is a gating function (usually
softmax), and Expert(·) is a FNN. In our study, we define use a linear network as the router,
i.e., Router(x, r) = x · rT As to TopK(z), it is the TopK function, i.e., TopK(z)i := 1 if zi

is among the TopK coordinates of z and TopK(z)i := 0 otherwise.
During model training, different MoE algorithms may produce different outputs, as we will
discuss in detail in Section 3.
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Figure 2: Controlled Comparisons of SparseMixer-v2 and GShard on 16×0.9B MoE.

3 GRIN MoE

In this section, we discuss in detail the two key techniques used in GRIN MoE:

• We propose SparseMixer-v2 to estimate the gradient related to expert routing, while the
conventional MoE training treats expert gating as a proxy for the gradient estimation.

• We scale MoE training with neither expert parallelism nor token dropping, while the
conventional MoE training employs expert parallelism and deploys token dropping.

3.1 Gradient Estimation for Expert Routing

Expert routing produces discrete expert assignment, allowing the network to be sparsely
activated and thus bringing the great scaling potential. At the same time, such a
routing process is not differentiable, thus making it infeasible to directly apply the vanilla
backpropagation and obtain reliable gradient estimation.
Conventional MoE Training. Conventional MoE training uses the router outputs
to compute gating results, treating the gating gradients as a proxy of the router gradient.
Particularly, as in Equation 1, the output of the MoE module is:

∑n−1
i=0 Gatingi(z)·TopK(z)i·

Expert(x, wi), where z = Router(x, r). Conventional MoE training views TopK(z)i as
constants and only back-propagates through Gating(z) to compute router weight gradients.
In this way, it treats the gating gradient as a proxy of the router gradient, i.e., ∇conventionalr :=
∇Gating(z) · ∂Gating(z)

∂r .
SparseMixer-v2. Inspired by recent advances in Straight-Through gradient
estimators (Bengio et al., 2013; Liu et al., 2023a), we proposed the SparseMixer-v2 method,
an extension of SparseMixer (Liu et al., 2023b), to obtain scalable and reliable gradient
estimations in this study.
We briefly introduce the SparseMixer-v2 method below, and leave a detailed description to
Appendix A. We first replace the TopK(·) function as random sampling of discrete variables
in model training. Then, following Liu et al. (2023a) and Liu et al. (2023b), we apply Heun’s
third order method to approximate the expert routing gradient and construct a modified
back-propagation to give a mathematically sound gradient estimation for expert routing.
Effectiveness of SparseMixer-v2. In Liu et al. (2023b), the effectiveness of SparseMixer
is demonstrated on the neural machine translation task and the ELECTRA language model
training. However, it has not been applied to autoregressive language model training at a
large scale. In the development of GRIN MoE, we conducted controlled experiments that
showd promising results for SparseMixer-v2. The result motivates us to apply this algorithm
to training GRIN MoE.
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Table 3: Training Throughput of Dense and MoE on 64 H100 gpus.
Total Parameters Active Parameters Throughput Per GPU Relative Throughput

Dense 1.6B 1.6B 34222
MoE 10B 1.6B 27962 81.71%
Dense 6.6B 6.6B 8176
MoE 42B 6.6B 7077 86.56%

Particularly, we trained two 16×0.9B MoEs with 2.5T tokens. One of them follows the same
recipe used in GRIN MoE, and the other replaces SparseMixer-v2 with the conventional
GShard method. As shown in Figure 2, the performance boost of SparseMixer-v2 generalizes
to the autoregressive language model training at the 16×0.9B scale: although GShard
performs better at the first 0.5T tokens, SparseMixer-v2 achieves stronger performance in
the later stage of training. It is worth mentioning the similar phenomenon observed in small
scale experiments on ELECTRA pretraining that Switch tends to perform better in the
beginning while SparseMixer comes from behind in the late stage (Liu et al., 2023b). We
suspect this is due to the model architecture difference, e.g., it introduces more randomness
to training by replacing TopK(·) function with random sampling of discrete variables, which
may slow down the training in the begining. Also, it is worth mentioning that, such extra
randomness also makes it harder to compare the training loss to the GShard. Semi-controlled
experiment results of a larger scale are discussed in Section 5.

3.2 Implementation and Scaling

Comparing to conventional models that activate all parameters for all inputs, MoE models
have more parameters for the same FLOPs due to their structured sparse computation,
significantly impacting computational efficiency. Conventional MoE training distributes
different expert networks across devices (i.e., expert parallelism) and employs strategies like
token dropping to facilitate the training process.
As our first step towards pursuing the scalability brought by MoE, we focus on MoE training
with a relative small number of experts (i.e., top2 routing over 16 experts). Leveraging recent
engineering advances, we avoid expert parallelism and eliminate the need for capacity factor
or token dropping. In the end, we are able to achieve over 80% relative training efficiency
improvement, compared to a dense model with the same active parameters, for GRIN MoE
training.
MoE Implementation. For MoE computation without expert parallelism, we find
the Megablocks (Gale et al., 2023) package to be very helpful. Particularly, we find its
grouped_GEMM kernels and wrappers outperform its sparse version, offering substantial
performance improvement. In addition, we rely on data parallelism, pipeline parallelism, and
activation checkpointing in the training of GRIN MoE, which lead to the best throughput
for our 16×3.8B model.
Training Throughput Comparisons of Dense and MoE Models. To showcase
the benefits of MoE training, we compare its training throughput to that of a conventional
dense model. Hardware details for these studies are in Appendix B. It is important to note
that, the throughput of the dense model is measured under the same parallelism setting as
that of the MoE model, and the comparison here is to study the GPU kernel efficiency of
densely activated networks (i.e., Dense) and sparsely activated networks (i.e., MoE).
As summarized in Table 3, we compare MoE models of two different sizes to their
corresponding dense models with the same number of parameters, measuring their training
throughput using the identical hardware. Despite having over six times as many parameters as
the dense model, MoE models achieve more than 80% relative throughput in this experiment,
confirming the significant computational scaling potential of models with GRIN MoE method.
Additionally, our observations indicate that MoE models do not experience more severe or
different throughput degradation compared to dense models when scaling up model size. Both
dense and MoE models show similar slowdown patterns in our experiments. For instance,
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Figure 3: Scaling of Different Parallelism Settings on 64 H100 gpus. The reported throughput
for N experts (x-axis) refers to the average training throughput of a 3.8BxN top2 MoE.

the training throughput of the 6.6B dense model is approximately 4.19 times slower than
that of the 1.6B dense model, which has 4 times fewer parameters. Similarly, the training
throughput of the 42B MoE model is about 3.96 times slower than that of the 10B MoE
model, which has 4.2 times fewer parameters.
Scaling Study and Tensor Parallelism. In this section, we discuss whether it is
computationally feasible to train MoE models with a larger number of experts without
employing expert parallelism.
First, by relying solely on pipeline parallelism, the maximum number of experts can be
extended from 16 to 32 by further partitioning different layers across GPUs. However,
increasing the number of experts beyond this would result in too many parameters for a
single layer, making it difficult to support without partitioning one layer across multiple
GPUs.
To address this challenge, conventional MoE training relies on expert parallelism to further
partition the model, which introduces the side effects of capacity factor and token dropping.
In our study, we explore the use of tensor parallelism instead of expert parallelism (Narayanan
et al., 2021). Similar to expert parallelism, which has two all-to-all communication
overheads in both forward and backward computations, tensor parallelism has two all-reduce
communication overheads in forward and backward computations. Although all-reduce
operations have higher latency than all-to-all operations, we can mitigate these overheads by
overlapping communication with computation during backward computation.
As in Figure 3, the maximum number of supported experts is extended to 52 (with 132B total
parameters) by combining pipeline parallelism and tensor parallelism (i.e., 3D parallelism).
It is worth noting that, since our throughput study hardware setting has only 64 GPUs,
we can partition the model into at most 64 stages. With 272 H100 GPUs, the limit of this
parallelism can be further extended to 200+ experts.
While this demonstrates the feasibility of scaling MoE training without expert parallelism,
we observe that using more complex parallelism typically leads to reduced computational
throughput. Correspondingly, one important direction for our future work is to perform
MoE training with more experts in a more sparse manner.

3.3 Global Load Balance Loss Adaptations

As previously discussed, our training framework is designed to scale MoE training using
tensor parallelism, pipeline parallelism, and data parallelism, but not expert parallelism.
Correspondingly, there is no need to employ token dropping or capacity factor, allowing the
distribution of activated experts to deviate from a uniform distribution.
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Therefore, we adapt the load balance loss to regulate the global expert load balance instead
of the local one. Particularly, the popular load balancing loss is defined as :

α · n ·
n∑

i=1
fi · E[softmax(z)i],

where α is a hyper parameter, n is the number of experts, and fi is the fraction of tokens
dispatched to expert i (Fedus et al., 2022). Conventionally, fi is computed at different GPUs
locally and thus the load balance loss will regulate the local expert load balance and alleviate
token dropping. In our study, we modified the load balance auxiliary loss by computing
fi globally (i.e., all-reduced within the data-parallel process group), regulating the expert
load to be balanced globally. Although this adjustment incurs additional communication
overheads, similar to tensor parallelism, these communications can be performed in parallel
with computations in an asynchronized way, thus largely reducing the additional latency.

4 Experiment

4.1 Training Setting

Pre-training. GRIN MoE is pre-trained on 4T tokens as a Causal Language Model.
The same training dataset has been used to train Phi-3 dense models (Abdin et al., 2024).
Post-training. Post-training consists of two stages: Supervised Fine-Tuning (SFT) based
on the causal language modeling objective, followed by Direct Preference Optimization (DPO;
Rafailov et al., 2024). The model is trained with 24B tokens in SFT, using high-quality
data across diverse categories, e.g., math, coding and conversation (Abdin et al., 2024). The
DPO dataset contains 1.4B tokens, including safety and identity preference data that is
used to align the model output with Microsoft’s Responsible AI principles (Haider et al.,
2024). We further adopt regularization techniques, such as adding random noise to the input
embedding (Jain et al., 2024) and applying dropout in expert layers (Fedus et al., 2022), to
improve the model’s generalization performance. It is worth mentioning that another version
of mid-training and post-training have been conducted with an emphasize on long context
and multilingual ability, which has been released as Phi-3.5-MoE (Abdin et al., 2024).

4.2 Evaluation of GRIN MoE

Table 2 summarizes the performance of GRIN MoE on popular benchmarks. Benchmarks
and baseline methods are elaborated in Appendix B.
Since both Phi-3 and GRIN MoE models are trained on the same datasets, the effectiveness
of our MoE training recipe is easily demonstrated. We can see that GRIN MoE with 6.6B
activated parameters performs significantly better than 7B dense model and similar to the
14B dense model. Compared to the 14B dense model, GRIN MoE performs better on math,
coding, and MMLU tasks.
Comparing GRIN MoE to Phi-3.5-MoE, which has been developed with a different focus
(i.e., multilingual capabilities and long context handling), we find that these two models
have distinct strengths. We observed that GRIN MoE excels in math and reasoning tasks,
while Phi-3.5-MoE demonstrates superior performance in question-answering (QA). Despite
their different strengths, both models yield similar average scores across various benchmarks,
which is expected given that both are configured as 16x3.8B MoEs and both are trained
with sparse backpropagation. Further comparisons are available in Section4.3.
Our evaluation also shows that GRIN MoE is significantly better than many open-sourced
models with a similar number of active parameters, such as Mixtral 8×7B (12.9b activated
parameters), Mistral 7B, Gemma 7B, Llama3 8B. And GRIN MoE is better than Mixtral
8×22B on most of the tasks. Nevertheless, GRIN MoE’s performance still falls short of
Llama3 70B and GPT-4o. This gap is expected, given the substantially larger computational
and data resources utilized in training these two latter models.
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Figure 4: Test Score on Translated 2024 GAOKAO Math-1.

Table 4: GRIN MoE performance on LiveBench-2024-07-25. Models are ranked by their
average score (AVG). ∗Baseline results are referenced from the official benchmark.

Reasoning Coding Mathematics Data Analysis Language IF AVG
Claude-3-haiku∗ 29.3 24.5 25.7 41.5 30.1 64.0 35.9
Mixtral-8x22B-instruct-v0.1∗ 29.3 32.0 28.3 31.7 26.5 63.1 35.2
GPT-3.5-turbo-0125∗ 26.7 27.7 26.9 41.2 24.2 60.5 34.5
GRIN MoE 35.3 23.7 29.8 32.0 16.9 57.6 32.5
Mistral-small-2402∗ 26.0 21.2 28.2 31.9 22.1 63.9 32.2
Command-r-plus∗ 28.7 19.5 24.9 24.6 23.9 71.5 32.2
Gemma-2-9B-it∗ 17.3 22.5 24.0 35.1 27.6 61.6 31.3

4.3 Math Ability Case Study

Phi-3 data, the training data of GRIN MoE, contains a massive amount of synthetic data,
greatly boosting model performance on benchmarks. Despite its effectiveness, it left doubts
on the performance of GRIN MoE on real-world tasks. Correspondingly, we conduct case
studies on math questions of the newly released GAOKAO exam (i.e., Nationwide Unified
Examination for Admissions to General Universities and Colleges), which is the annual
national undergraduate admission exam in China. Known for its rigorous security protocols,
this exam serves as an ideal ”truly held-out” test bed for assessing AI models’ ability to
answer math questions. Note that the training of GRIN MoE concludes on June 3, Pacific
Standard Time, and the 2024 GAOKAO starts on June 7, China Standard Time.
Exam Score. To assess the capability of various models in answering math questions,
we used translated questions as the input3, scored their responses manually, and visualized
the result in Figure 4 (detailed scoring results and the response of GRIN MoE can be find
in Appendix C). GRIN MoE scored 46 out of 73 points on these questions, outperforming
Llama3 70B by 11 points, and is only 6 and 5 points away from the Gemini Ultra-1.0 and
Claude3 Opus, respectively.
These results demonstrate GRIN MoE ’s strong capacity for mathematical reasoning. As the
chance of data leakage in this case study is slim, the result suggests that the capacity of
GRIN MoE is likely attributed to the generative distillation approach (Hsieh et al., 2023;
Mukherjee et al., 2023), instead of memorization.
GRIN MoE Responses Discussion. Analyzing the response of GRIN MoE to these
questions, we have some interesting observations:

3We used the translated questions from https://github.com/zhengaq/GAOKAO-Math24.
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• GRIN MoE is capable of answering challenging math questions. For instance, question 4
requires the model to perform algebraic manipulations involving trigonometric functions
with an unknown variable. As in Appendix D.4, GRIN MoE not only produces the correct
answer but also presents all the necessary derivations accurately. Notably, GRIN MoE
is the only model among those we tested, including Llama3 and the Phi-3 models, to
correctly answer this question.

• For single-choice questions and multiple-choice questions, sometimes GRIN MoE produces
the right or partially right answers, together with chain-of-thought prompts that have
typos (question 5 as in Appendix D.5 and question 9 as in Appendix D.9), skipped steps
(question 7 as in Appendix D.7) or errors (question 10 as in Appendix D.10 and question
11 as in Appendix D.11). Additionally, we observe that the output of GRIN MoE may
change dramatically for challenging questions. These phenomenons are also observed in
the responses of other models.

• GRIN MoE has the ability to quickly catch a hint. For question 13, as in Appendix D.13,
GRIN MoE initially makes a mistake by assuming that the point (0, 1) is on the curve
y = ln(x + 1) + a, leading to an incorrect answer. However, after incorporating a hint
that highlights the relationship between the curve and the point, GRIN MoE adjusts
its response significantly and solves the problem correctly (as in Appendix D.15). It is
noteworthy that GRIN MoE is the only model to generate the correct answer to this
question with the hint, among all Llama3 and Phi-3 dense models.

When comparing GRIN MoE to Phi-3.5-MoE, different response patterns have been observed.
As shown in Appendices E.1 and E.7, Phi-3.5-MoE occasionally generated responses without
chain-of-thought prompts, while GRIN MoE consistently provided chain-of-thought responses
for all 14 questions. Furthermore, as in Appendices E.12 and E.4, Phi-3.5-MoE sometimes
produced responses with repetitive outputs at the end, whereas GRIN MoE maintained
proper conclusions for all 14 questions. We suspect this behavior may be related to the
different focus of the training in Phi-3.5 models which include handling of a longer context
window up to 128K tokens and multilingual capabilities.
Moreover, the answers produced by Phi-3.5-MoE differ significantly from those of GRIN MoE.
The models provided identical answers for only 5 out of 14 questions. Even for questions
both models answered correctly, they offered different explanations. Additionally, while
both models made the same mistake on question 13 (as shown in Appendices D.13 and
E.13), GRIN MoE was able to quickly incorporate the provided hint and answer the question
correctly (as in Appendix D.15), whereas Phi-3.5-MoE failed (as in Appendix E.15).

4.4 Limitations and Weakness

Since the Phi-3 data, the training corpus of GRIN MoE, is constructed with an emphasize
on reasoning and coding abilities, we observe the model to yield a suboptimal performance
on natural language tasks. We use the 2024-07-25 release of the LiveBench for model
evaluation (White et al., 2024) and summarize the performance of GRIN MoE in Table 4,
which also shows the performance of 6 other models that have similar average scores.
Comparing to baselines having similar average score on this benchmark, GRIN MoE achieves
better scores on the reasoning, coding, and mathematics. The result is consistent with our
case study in Section 4.3. Meanwhile, we observe that GRIN MoE achieves an exceptionally
low average score (i.e., 16.9) on natural language tasks. We suspect that this is due to the
limitation of the training corpus, since other models trained on the same corpus exhibit
similar problems.

5 Analyses

As described in Section 3, we have tailored the training recipe for GRIN MoE, featuring
SparseMixer-v2 and load balance loss adaptation. However, due to resource constraints, we
were unable to set up a controlled environment to individually study the impact of each
variable at the scale of GRIN MoE. Therefore, we conducted a semi-controlled comparison
to quantify the effect of the training recipe.
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Table 5: Semi-controlled Performance Comparisons. Different from results in Table 2 and
Figure 1, the reported performances here are before the posttraining. Detailed settings are
elaborated in Section 5.1.

MMLU Arc-C GSM-8K

Dense 7B 75.1 89.8 85.3
14B 76.4 89.8 85.9

MoE (Control recipe) 16×3.8B 75.1 88.9 79.1
MoE (Main recipe) 16×3.8B 77.4 89.6 89.5

Figure 5: Routing distribution on 2 million pretraining tokens. The model on the left is
trained by main recipe and the right is trained by control recipe. The values are normalized
per layer. The summation of the values in each row is 1 (perfectly balanced loading would
result in a value of 0.0625).

5.1 Semi-controlled Setting

We compare the following two training recipes (the Main recipe and the Control recipe):

• Main recipe is the one used for GRIN MoE training, as described in Section 3.

• Control recipe resembles conventional MoE training recipes and is used for comparison.
It differs from the main recipe in that the former replaces SparseMixer-v2 used in the
main recipe with GShard, exchanges global load balance loss for local load balance loss,
and modifies several hyper-parameters.

We then trained MoE models using the two recipes on a 4T-token corpus, and compared
them with the Phi-3 7B and 14B models trained on a super-set of the 4T-token corpus on
downstream tasks without post-training.
Note that comparing to the controlled experiment in Figure 2, the control recipe does not
adapts the global load balance loss as in Section 3.3, while the GShard baseline in Figure 2
adapts the global load balance loss adaptation.

5.2 Downstream Performance

The results are presented in Table 5. The model trained using the control recipe matches the
performance of the 7B dense model. The main recipe is more effective, resulting in a model
whose performance matches that of the 14B dense model. We attribute the effectiveness to
the use of SparseMixer-v2 and the adaptive loss modifications.
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(a) Pairwise Cosine Similarity of Routing Distribution on MMLU tasks (Main Recipe)
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Figure 6 (a): MoE Routing distribution similarity across MMLU 57 tasks for the main recipe.
The darker color means lower similarity. X-axel and Y-axel have the same task order.

5.3 Routing Analyses

We analyze the routing distributions of models trained with the main and control recipes.
We count how many times each expert (in each layer) is selected by different hidden states
as routing distribution.
MoE routing on pretraining data. To analyze the routing distribution on the
pretraining dataset, we randomly select 2 million tokens from the pretraining dataset and
visualize the expert loading distribution on them in Figure 5. First, we see that all layers
for both recipes have reasonably balanced expert loading. Note that the maximum value in
Figure 5 is 0.09, which is about 1.44 times of the perfectly balanced expert loading (0.0625).
Then, relatively, we observe that the model trained with the main recipe is less balanced
than the control recipe.
MoE routing on different MMLU tasks. Next, we empirically verify whether different
experts contain domain specific information. We first compare the routing distribution
among the MMLU 57 tasks. For each task, we sample 24 prompts with 5-shot. The routing
distribution for each task is a vector with 16 (experts per layer) × 32 (layers) dimensions
(total number of experts). We then compute cosine similarity between the routing distribution
of different tasks and visualize the similarities as a heatmap in Figure 6 (a) and 6 (b), where
we group these 57 tasks into 4 categories based on their meta data. Note that the meta data
we used here is provided in Hendrycks et al. (2021),
The MoE trained with our main recipe is shown in Figure 6 (a), we can see the STEM
category has a clear boundary to social_science and humanities. Additionally, it is quite
reasonable for the two outliers in social_science and humanities, (i.e., econometrics
and formal_logic), to have a higher similarity to the STEM category. This indicates that
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(b) Pairwise Cosine Similarity of Routing Distribution on MMLU tasks (Control Recipe)

Figure 6 (b): MoE Routing distribution similarity across MMLU 57 tasks for the control
recipe. This figure shares the same setting and the same color bar with Figure 6 (a).

the routing distribution can vary significantly among different tasks. We also visualize the
model trained with the control recipe (as in Figure 6 (b)), in which the routing distributions
are similar across different tasks.
A case study of MoE routing. This analysis uses the MoE model trained with the
main recipe. As shown in Figure 7, the routing distributions are different in different layers.
The bottom (shallow) layer has the most balanced expert distribution. In the middle layer,
the experts 10 and 15 are selected more other than the other experts. The final layer (deep)
comes to be more balanced than the middle layer. These findings reveal that MoE routing
distributions are related to such information as context, word, position, etc.
Our study seems to verify our hypothesis that expert networks in GRIN MoE have developed
highly-specialized and heterogeneous expertise. As pointed out in Wei et al. (2024), such
experts are likely to improve models’ capacity.

6 Conclusion

In this paper, we describe in detail a new MoE model, known as GRIN MoE, and the model
training techniques (i.e., sparse backpropgationa and model parallelism configuration) used
to train the model. Compared to dense models trained on the same pretraining corpus, GRIN
MoE demonstrates a remarkable scaling potential of MoE. We also provided a summary of
our observations and insights gained during GRIN MoE ’s development, aiming to deepen
our understanding of MoE training. Through controlled and semi-controlled experiments we
have demonstrated how gradient estimation methods and model parallelism strategies, along
with corresponding auxiliary adaptations, significantly improves model training.
Looking ahead, many important open questions remain. For example, the training
and inference of MoE models present challenges to both algorithms and engineering
implementations. Also, since softmax is originally designed to approximate the argmax
operation, it presents new challenges to approximate topk as sampling. We plan to further
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Figure 7: Case study of MoE trained by main recipe. It visualizes how experts are selected
at different position in different layers. We select one question from newly released College
Entrance Exam for the case study and more information is in Appendix D.15.

explore solutions to these challenges, with a focus on enhancing sparsity and developing
efficient computing and scaling methods to advance state-of-the-art MoE modeling.
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A SparseMixer-v2

SparseMixer-v2 has two important components, i.e., approximating TopK with discrete
variable sampling, and estimating gradients in a scalable manner. Here, we first introduce
SparseMixer-v2 for Top1 MoE, then extend it for TopK MoE.

A.1 Discrete Variable Sampling for Approximating Top1

In conventional MoE training, it is a standard practice to add jitter noise to expert routing,
which would lead to implicit expert sampling. With SparseMixer-v2, we try to replace the
implicit expert sampling with explicit expert sampling.
We start from the special case of K = 1. Particularly, we will approximate Top1(z) as
sampling from MaskedSoftmax(z):

MaskedSoftmax(z)i = exp(zi) · δi∑
j exp(zj) · δj

, (2)

where δi = δ
(
z∗−zi ≤ r ·(|zi|+|z∗|)

)
, z∗ = maxk zk, and r is a hyper-parameter. Comparing

to the vanilla softmax sampling, MaskedSoftmax(·) introduces a hyper-parameter r to control
the magnitude of randomness and sparsity of the sampling space. Similar to Fedus et al.
(2022) and Liu et al. (2023b), we observed that the vanilla softmax sampling doesn’t work
well in practice. In our experiments, MaskedSoftmax(·) yields similar performance with
conventional jitter noise in MoE training.

A.2 Top1 SparseMixer-v2 MoE

For expert routing gradient estimation, we proposed two slightly different variants,
SparseMixer-v2* and SparseMixer-v2. Let us first present SparseMixer-v2* and then move
to introducing SparseMixer-v2.
SparseMixer-v2*. We configure the MoE layer for SparseMixer-v2* as:

n−1∑
i=0

MaskedSoftmax(z)i ·Di · Expert(x, wi), where D ∼ MaskedSoftmax(z). (3)

While the SparseMixer-v2* MoE layer will behave as Equation 3 during inference, it will
behave as in Algorithm 2 during training. Now lets proceed to the underlying derivations of
Algorithm 2. Referring other parts of the network (including the loss function) as f , the
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training objective is:

L = ED∼MaskedSoftmax(z)

[
f

(
n−1∑
i=0

MaskedSoftmax(z)i ·Di · Expert(x, wi)
)]

=
n−1∑
i=0

f
(
MaskedSoftmax(z)i · Expert(x, wi)

)
· MaskedSoftmax(z)i. (4)

For simplicity, we mark MaskedSoftmax(z) as p. Then the gradient of z is:

∇z =
n−1∑
i=0

pi ·
∂f
(
pi · Expert(x, wi)

)
∂z

+ f
(
pi · Expert(x, wi)

)
· ∂pi

∂z

=
n−1∑
i=0

pi ·
∂f
(
pi · Expert(x, wi)

)
∂z

+
(

f
(
pi · Expert(x, wi)

)
− f(0)

)
· ∂pi

∂z
. (5)

Note that Equation 5 is usually known as baseline subtraction4. In the ODE literature,
there are many ways to approximate f

(
pi · Expert(x, wi)

)
− f(0). Here, we focus on two

approximations5:

• Euler’s method: a first-order ODE solver that approximates f
(
pi ·Expert(x, wi)

)
− f(0)

as f ′(pi · Expert(x, wi)
)
· pi · Expert(x, wi).

• Heun’s third-order method: a third-order ODE solver that approximates f
(
pi ·

Expert(x, wi)
)
−f(0) as

(
1
4 ·f ′(pi ·Expert(x, wi)

)
+ 3

4 ·f ′( pi·Expert(x,wi)
3 )

)
·pi ·Expert(x, wi).

Correspondingly, we approximate ∇ in two ways. Following Euler’s method, we have:

∇1st z =
n−1∑
i=0

(
pi ·

∂f
(
pi · Expert(x, wi)

)
∂z

+ f ′(piExpert(x, wi)
)
· piExpert(x, wi) ·

∂pi

∂z

)

=
n−1∑
i=0

(
pi ·

∂f
(
pi · Expert(x, wi)

)
∂z

+ pi ·
∂f
(
piExpert(x, wi)

)
∂piExpert(x, wi)

∂piExpert(x, wi)
∂pi

∂pi

∂z

)

=
n−1∑
i=0

2 · pi ·
∂f
(
pi · Expert(x, wi)

)
∂z

= ED∼MaskedSoftmax(z)

[
2 ·

∂f
(
pD · Expert(x, wD)

)
∂z

]
.

Following Heun’s third-order method, we have:

∇3rd z =
n−1∑
i=0

(
pi ·

∂f
(
pi · Expert(x, wi)

)
∂z

+
(

1
4 · f

′(pi · Expert(x, wi)
)
+

3
4 · f

′(pi · Expert(x, wi)
3

))
· pi · Expert(x, wi) ·

∂pi

∂z

)

=
n−1∑
i=0

(5
4 · pi ·

∂f
(
pi · Expert(x, wi)

)
∂z

+ 9
4 · pi ·

∂f( pi·Expert(x,wi)
3 )

∂z

)
=ED∼MaskedSoftmax(z),B∼Bernoulli( 5

8 )

[
(6− 4B) ·

∂f
( 1+2B

3 · pD · Expert(x, wD)
)

∂z

]
.

4since
∑

i
pi = 1, we have 0 =

∂
∑

i
pi

∂z
.

5For simplicity, we use f ′(h) to refer to ∂f(h)
∂h

.
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Figure 8: Controlled Comparisons of SparseMixer-v2 and v2* on 16×0.9B MoE.

Lastly, as discussed in Liu et al. (2023b), we combine∇3rd and∇1st to balance router learning
and expert learning by using ∇1st if D = arg max(z) or ∇3rd otherwise. Particularly, using
δD to refers to δ(D = arg max(z)), we have:

∇SparseMixer-v2* z = ED∼MaskedSoftmax(z)[∇D,SparseMixer-v2* z],

where ∇D,SparseMixer-v2* z

=E
B∼Bernoulli( 5

8 )

[
(1 − δD) · (6 − 4B) ·

∂f( 1+2B
3 · pD · Expert(x, wD))

∂z

]
+ δD · 2 ·

∂f(pD · Expert(x, wD))
∂z

=E
B∼Bernoulli( 5

8 )

[(
6 − 4 · max(B, δD)

)∂f
( 1+2·max(B,δD )

3 · pD · Expert(x, wD)
)

∂z

]
=E

B∼Bernoulli( 5
8 )

[
2 · f

′
( 1 + 2 max(B, δD)

3
· pD · Expert(x, wD)

)∂pD · Expert(x, wD)
∂z

]
. (6)

SparseMixer-v2. During the development of GRIN MoE, an error was made in the
derivation and there is a discrepancy between Algorithm 1 and Equation 6. Particularly,
instead of Equation 4, we used Equation 7 as the objective:

L̂ = ED∼MaskedSoftmax(z)

[
f

(
n−1∑
i=0

detach
(
MaskedSoftmax(z)i

)
·Di · Expert(x, wi)

)]
. (7)

With similar derivations as before, the resulting estimator is as in Equation 8 and we name
this estimator as SparseMixer-v2.

∇̂D,SparseMixer-v2z

=EB∼Bernoulli( 1
4 )

[
f ′(1 + 2 max(B, δD)

3 · pD · Expert(x, wD)
)∂pD · Expert(x, wD)

∂z

]
. (8)

Due to resource constraints, we only did preliminary empirical analyses on the impact of
this discrepancy between Equation 7 and Equation 4, and could not conduct the pretraining
from scratch again. In our empirical analyses, we observed that this discrepancy has only
limited impacts on the performance and we did not observe evidence indicating that the
discrepancy would lead to a significant performance degeneration.
Particularly, we followed the experiment setting as in Figure 2 and trained SparseMixer-
v2* for 2.5T tokens. As in Figure 8, SparseMixer-v2 and SparseMixer-v2* achieve
comparable performance. It is worth mentioning that there is an additional scaling factor
in Equation 6 (i.e., 2). In our experiments, we observed that adding a temperature of 2 at
the MaskedSoftmax helps to stabilize the training, which would cancel the scaling factor in
Equation 6 and ensure a consistent gradient magnitude (as in line 1 of Algorithm 2).
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Algorithm 1: Top1 SparseMixer-v2 MoE Layer in Training.
Input: Router Output (z), Expert Input (x), and Expert Weights ({wi})
Output: MoE Output (y) and Expert Assignment (D)

1 p← MaskedSoftmax(z) /* MaskedSoftmax() is defined in Equation 2. */
2 Sample D from p
3 h← Expert(x, wD) · pD

4 δD ← 1 if D = arg max(z) else 0
5 Sample B from Bernoulli( 1

4 ) /* P (B = 1) = 1
4. */

/* detach(·) returns a duplicate, detached from the existing graph. */
6 y ← h + detach

(
max(δD, 1+2·B

3 ) · h− h
)

7 return y, D

Algorithm 2: Top1 SparseMixer-v2* MoE Layer in Training.
Input: Router Output (z), Expert Input (x), and Expert Weights ({wi})
Output: MoE Output (y) and Expert Assignment (D)

1 p← MaskedSoftmax( z
2 ) /* MaskedSoftmax() is defined in Equation 2. */

2 Sample D from p
3 h← Expert(x, wD) · pD

4 δD ← 1 if D = arg max(z) else 0
5 Sample B from Bernoulli( 5

8 ) /* P (B = 1) = 5
8. */

/* detach(·) returns a duplicate, detached from the existing graph. */
6 y ← 2 · h + detach

(
max(δD, 1+2·B

3 ) · h− 2 · h
)

7 return y, D

A.3 Extension to TopK

As in Algorithm 3, we further extend the SparseMixer-v2 Top1 algorithm to TopK by sampling
without replacements.

A.4 Difference of GShard, SparseMixer, and SparseMixer-v2

GShard v.s. SparseMixer-v2. Comparing GShard and SparseMixer-v2, they differs
in mostly two ways:

• GShard and SparseMixer-v2 behave differently in inference, since SparseMixer-v2 replaces
the TopK function with the MaskedSoftmax for sampling and gating.

• TopK and SparseMixer-v2 are trained differently, i.e., GShard treats gating as a proxy for
the router gradient and SparseMixer-v2 estimates the router gradient directly.

In our experiments, we observed the architecture change is very important for GShard and
SparseMixer-v2 performing differently. We conduct an experiment that only replaces the
TopK function with the MaskedSoftmax for sampling but not gating, and estimates gradients
like SparseMixer-v2. The performance of the resulting method is almost identical to GShard,
which may due to the gating gradients overshadowed the routing gradients.
SparseMixer-v2 v.s. SparseMixer. Comparing to SparseMixer as in Liu et al.
(2023b), the SparseMixer-v2 and SparseMixer-v2* that used in this study mainly differs in
three ways:

• While Liu et al. (2023b) uses the mid-point method (a second-order ODE method), we
uses Heun’s third-order method for approximating f(pi · Expert(x, wi))− f(0) here.

• While Liu et al. (2023b) introduces additional parameters ω to scale the MoE layer output
for training stabilization, we didn’t introduce such parameters in our study. Instead, we
find that model training can be successfully stabilized by initializing the network properly
(Glorot & Bengio, 2010; He et al., 2015; Liu et al., 2020; Yang et al., 2021).
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Algorithm 3: TopK SparseMixer-v2/v2* MoE Layer in Training.
Input: Router Output (z), Expert Input (x), Activate Expert Number per Token (K),

and Expert Weights ({wi})
Output: MoE Output (y)

1 for k ∈ {1, · · · , K} do
2 yk, D ← SparseMixer-v2/v2* Top1(z, x, {wi}) as in Algorithm 1/2
3 zD ← −∞ /* Mask out expert D in following expert samplings. */

4 y ←
∑K

k=1 yk

5 return y

• SparseMixer and SparseMixer-v2* use Equation 4 as the objective function, and
SparseMixer-v2 uses Equation 7 as the objective function.

B Experiment Setting Details

Baselines in Table 2. We compare our MoE with existing open-sourced models, which
have a similar number of active parameters. It includes MoE model, Mixtral (Jiang et al.,
2024), and dense models, such as Phi-3 7b/14b (Abdin et al., 2024), Mistral 7b (Jiang et al.,
2023a), Gemma 8b (Team et al., 2024), Llama3 8b/70b, and also the popular LLM APIs,
such as GPT-3.5, GPT-4o, Gemini-Pro-1.5-Flash.
Benchmarks in Table 2. Our evaluation is same as Phi-3 (Abdin et al., 2024). For a fair
comparison, we evaluate all the models on popular benchmarks under a same setting. Thus,
the prompts and fewshot numbers could be different from the papers introducing the models.
Our benchmarks include MMLU 5-Shot (Hendrycks et al., 2021), HellaSwag 5-Shot (Zellers
et al., 2019), ANLI 7-Shot(Nie et al., 2020), GSM-8K 8-Shot CoT(Cobbe et al., 2021),
MATH 0-Shot CoT (Hendrycks et al., 2021), MedQA 2-Shot,(Jin et al., 2020), AGIEval
0-Shot (Zhong et al., 2024), TriviaQA 5-Shot(Joshi et al., 2017), Arc-C 10-Shot (Clark
et al., 2018), Arc-E 10-Shot (Clark et al., 2018), PIQA 5-Shot(Bisk et al., 2019), SociQA
5-Shot (Bisk et al., 2019), BigBench-Hard 3-Shot CoT (Srivastava et al., 2023; Suzgun et al.,
2023), WinoGrande 5-Shot (Sakaguchi et al., 2020), OpenBookQA 10-Shot (Mihaylov et al.,
2018), BoolQ 2-Shot, (Clark et al., 2019), CommonSenseQA 10-Shot, (Talmor et al., 2019),
TruthfulQA 10-Shot MC2 (Lin et al., 2021), HumanEval 0-Shot (Chen et al., 2021) , MBPP
3-Shot (Austin et al., 2021), Our evaluation on benchmark dataset is shown in Table 2. It is
worth mentioning that, we use ∗ in Table 2 to indicate that the average score of 16 sub-tasks
of BigBench-Hard are reported for GPT-4o (for the rest of other models, we report the
average of 27 sub-tasks).
Hardware Information for Throughput Study. We use the same 8 nodes to
conduct the throughput study in Section 3.2. Each node has 8 GPUs (H100 with 80GB
GPU memory), 200 vCPU cores (2.0 3.8GHz), and 2TB system memory. Also, 8×400Gbps
(3200Gbps cumulative) Infiniband is used for node-to-node networking.
Figure 1 Setting. In Figure 1, we listed the MMLU scores from our evaluation
pipelines for GRIN MoE, Mixtal 8×7B, Mixtal 8×22B, LLaMA3 8B, Gemma 7B, Phi-3-mini,
Phi-3-small, and Phi-3-medium. For all other models, we used the reported MMLU scores
from their studies respectively.
Translated 2024 GAOKAOMath-1. We used the internal Microsoft GenAI playground
to collect feedbacks from GRIN MoE and other Phi-3 models. As to other models, their
responses are collected from similar web portals.
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C Translated 2024 GAOKAO Math-1

We listed the responses from GRIN MoE to the translated 2024 Chinese University Entrance
Exam Math-1 questions in Table 6.

D GRIN MoE outputs to 2024 GAOKAO Math-1

Please find GRIN MoE outputs to 2024 GAOKAO Math-1 as below. We annotate the errors
in the generated answers with red color.
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Table 6: 2024 Translated Chinese University Entrance Exam Math-1.
GPT Claude3 Gemini Llama3 GRIN Phi-3.5 Phi-3
4o Opus Ultra-1.0 8B 70b MoE MoE Medium Small

Single-Choice Questions (Each question worth 5 points)
Q1 (A) A A A C A A D D A
Q2 (C) C C A C NaN C C C A
Q3 (D) D D D D D D D D D
Q4 (A) A A A D NaN A NaN NaN C
Q5 (B) B B B C B B B A B
Q6 (B) B B NaN A A D B A A
Q7 (C) C A C B C C C C D
Q8 (B) C B B NaN B A C B C
Score 35 35 30 10 25 30 25 20 15

Multi-Choice Questions (Each question worth 6 points. Partial credit is given for partially correct
answers, but no points will be awarded if any incorrect choice is selected.)
Q9 (BC) BC BC BC BD BC BC BC BC ABC

Q10 (ACD) ACD BC ACD AC BCD AD CD ABD NaN
Q11 (ABD) ABD AD AD AD AD ABD AD AD AD

Score 18 10 16 8 10 16 14 10 4
Fill-In-Blank Questions (Each question worth 5 points)

Q12 (3/2) 3/2 1 5/4 5 4/a 3
√

5
5 NaN 13

5 3/2
Q13 (ln 2) ln 2 ln 2 ln 2 -1 1− ln(3/2) 1 1 2 1
Q14 (1/2) 0.69 0.15 1 5/8 11/12 0.8125 53/256 0 0.0152

Score 10 5 5 0 0 0 0 0 5
Total Score (Max Score 73)

63 50 51 18 35 46 39 30 24
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D.1 GRIN MoE Response to Question 1

Hyperlink to Table of Content

Question 1 (Correct Answer: A) Output 1

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given set
A = {x | −5 < x3 < 5},
B = {−3, −1, 0, 2, 3}, we have
A ∩ B =

Option A: {−1, 0}

Option B: {2, 3}

Option C: {−3, −1, 0}

Option D: {−1, 0, 2}

To find the intersection of sets A and B, we need
to find the elements that are common to both
sets.

First, let's find the elements of set A. We have
the inequality −5 < x3 < 5. We can find the
cube roots of -5 and 5 to get the range of x
values:

x > 3√−5 ≈ −1.71 and x < 3√−5 ≈ 1.71

So, set A contains the elements between -1.71 and
1.71, excluding -1.71 and 1.71 themselves.

Now let's compare set A with set B:

−3 /∈ A
−1 ∈ A
0 ∈ A
2 /∈ A
3 /∈ A

So, the intersection of sets A and B is {−1, 0}.

The correct option is Option A: {−1, 0}.

26



D.2 GRIN MoE Response to Question 2

Hyperlink to Table of Content

Question 2 (Correct Answer: C) Output 2

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given z
z−1 = 1 + i, we

have z =

Option A: −1 − i
Option B: −1 + i
Option C: 1 − i
Option D: 1 + i

To solve the equation z
z−1 = 1 + i, we first

multiply both sides by z-1 to get rid of the
fraction:

z = (1 + i)(z − 1)

Now, we distribute the right side:

z = z + iz − 1 − i

Next, we move all terms with z to one side of the
equation:

z − z − iz = −1 − i

This simplifies to:

−iz = −1 − i

Now, we divide both sides by -i:
z = −1−i

−i

To simplify the right side, we multiply the
numerator and denominator by the complex
conjugate of the denominator, which is i:

z = (−1−i)(i)
(−i)(i)

This simplifies to:

z = −i−i2

−i2

Since i2 = −1, we can substitute that in:

z = −i−(−1)
−(−1)

This simplifies to:

z = −i+1
1

So, z = 1 − i.

The correct option is Option C: 1 − i.
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D.3 GRIN MoE Response to Question 3

Hyperlink to Table of Content

Question 3 (Correct Answer: D) Output 3

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given vector a = (0, 1),
b = (2, x). If b ⊥ (b − 4a), then
we have x =

Option A: −2
Option B: −1
Option C: 1
Option D: 2

To find the correct option, we need to use the
fact that two vectors are perpendicular if
their dot product is equal to 0.

Given a = (0, 1) and b = (2, x), we have
b − 4a = (2, x) − 4(0, 1) = (2, x − 4).

Now, we need to find the dot product of b and
(b − 4a) and set it equal to 0:

b · (b − 4a) = (2, x) · (2, x − 4) = 2(2) + x(x44) = 4 + x2 − 4x
.

Setting the dot product equal to 0, we get:

4 + x2 − 4x = 0.

Rearranging the equation, we have:

x2 − 4x + 4 = 0.

This is a quadratic equation, and we can factor it
as:

(x − 2)2 = 0.

Taking the square root of both sides, we get:

x − 2 = 0.

Solving for x, we find:

x = 2.

So, the correct option is Option D: 2.
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D.4 GRIN MoE Response to Question 4

Hyperlink to Table of Content

Question 4 (Correct Answer: A) Output 4

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given cos(α + β) = m,
and tan(α) tan(β) = 2, we want
to find cos(α − β) =

Option A: −3m
Option B: − m

3
Option C: m

3
Option D: 3m

To find cos(α − β), we can use the cosine
difference formula:

cos(α − β) = cos(α) cos(β) + sin(α) sin(β)

We know that cos(α + β) = m, so we can use the
cosine sum formula to express cos(α + β) in
terms of cos(α), cos(β), sin(α), sin(β):

cos(α + β) = cos(α)cos(β) − sin(α)sin(β) = m

Now, we can use the given information
tan(α) tan(β) = 2. We know that tan(α) = sin(α)

cos(α)

and tan(β) = sin(β)
cos(β), so:

sin(α)
cos(α) · sin(β)

cos(β) = 2

sin(α) sin(β) = 2 cos(α) cos(β)

Now, we can substitute this expression into the
cosine difference formula:

cos(α − β) = cos(α) cos(β) + sin(α) sin(β)
= cos(α) cos(β) + 2 cos(α) cos(β) = 3 cos(α) cos(β)

We also know that
cos(α + β) = cos(α) cos(β) − sin(α) sin(β) = m.
Since sin(α) sin(β) = 2 cos(α) cos(β), we can
rewrite this as:

m = cos(α) cos(β) − 2 cos(α) cos(β) = − cos(α) cos(β)

Now, we can substitute this expression into the
equation for cos(α − β):

cos(α − β) = 3 cos(α)cos(β) = 3(−m) = −3m

So, the correct option is:

Option A: −3m
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D.5 GRIN MoE Response to Question 5

Hyperlink to Table of Content

Question 5 (Correct Answer: B) Output 5

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given that the radius
of the base of a cylinder and
a cone are equal, the
lateral surface areas are
equal, and the height of the
radius and the cylinder are
both

√
3 , what is the volume

of the cone?

Option A: 2
√

3π

Option B: 3
√

3π

Option C: 6
√

3π

Option D: 9
√

3π

To find the volume of the cone, we first need to
find the radius and height of the cone.

Since the lateral surface areas of the cylinder
and the cone are equal, we can set up the
following equation:

2πrhcylinder = πrlcone

Given that the height of the cylinder is
√

3 and
the radius of the base of both the cylinder
and the cone are equal, we can substitute
these values into the equation:

2πr(
√

3) = πrlcone

Now, we can solve for the slant height of the cone
, lcone:

lcone = 2
√

3

Since the radius of the base of the cone and the
height of the radius are equal, we can use the
Pythagorean theorem to find the height of the
cone, hcone

r2 + h2
cone = l2

cone

r2 + h2
cone = (2

√
3)2

r2 + h2
cone = 12

Given that r = hcylinder =
√

3, we can substitute
this value into the equation:

(
√

3)2 + h2
cone = 12

3 + h2
cone = 12

h2
cone = 9

hcone = 3

Now that we have the radius and height of the cone
, we can find the volume of the cone using the
formula:

Vcone = 1
3 πr2hcone

Vcone = 1
3 π(

√
3)2(3)

Vcone = 1
3 π(3)(3)

Vcone = 3
√

3π

So, the correct option is B: 3\sqrt{3}\pi.
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D.6 GRIN MoE Response to Question 6

Hyperlink to Table of Content

Question 6 (Correct Answer: B) Output 6

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given the function

f(x) =
{

−x2 − 2ax − a, x < 0
ex + ln(x + 1), x ≥ 0

to ensure f(x) is strictly
increasing on R, the range
of a is

Option A: (−∞, 0]
Option B: [−1, 0]
Option C: [−1, 1]
Option D: [0, ∞)

To ensure that the function f(x) is strictly
increasing on R, we need to analyze the two
cases separately.

Case 1: x < 0

The function is given by f(x) = −x2 − 2ax − a. To
ensure that this part of the function is
strictly increasing, we need to find the
derivative and set it greater than 0.

f ′(x) = −2x − 2a

For f ′(x) > 0, we have −2x − 2a > 0 \Rightarrow
x > −a. Since x > 0, we need −a > 0
\Rightarrow a > 0.

Case 2: x ≥ 0

The function is given by f(x) = ex + ln(x + 1). To
ensure that this part of the function is
strictly increasing, we need to find the
derivative and set it greater than 0.

f ′(x) = ex + 1
x+1

Since ex > 0 and 1
x+1 > 0 for x ≥ 0, we have

f ′(x) > 0 for all x ≥ 0.

Combining the results from both cases, we have
a > 0. Therefore, the correct option is:

Option D: [0, ∞)
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D.7 GRIN MoE Response to Question 7

Hyperlink to Table of Content

Question 7 (Correct Answer: C) Output 7

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: When x ∈ [0, 2π], the
number of intersection points
between the curves y = sin x

and y = 2 sin
(
3x − π

6

)
is

Option A: 3
Option B: 4
Option C: 6
Option D: 8

To find the number of intersection points between
the two curves, we need to set the two
equations equal to each other and solve for x:

sin x = 2 sin(3x − π
6 ) 

We can use the double-angle identity for sine to
rewrite the right side of the equation:

sin x = 2[2 sin( 3x− π
6

2 ) cos( 3x− π
6

2 )]

Now, let u = 3x− π
6

2 . Then, x = 2u+ π
6

3 . Substituting
this into the equation, we get:

sin( 2u+ π
6

3 ) = 4 sin u cos u

Now, we can use the sine addition formula to
rewrite the left side of the equation:

sin( 2u
3 + π

18 ) = 4 sin u cos u

We can now use the sine addition formula to expand
the left side of the equation:

sin( 2u
3 ) cos( π

18 ) + cos( 2u
3 ) sin( π

18 ) = 4 sin u cos u

Now, we can use the double-angle identities for
sine and cosine to rewrite the left side of
the equation:

1
2 [sin( 4u

3 + π
18 ) + sin( π

18 − 4u
3 )] = 4 sin u cos u

Now, we can set each sine term equal to 4 sin u cos u
and solve for u:

sin( 4u
3 + π

18 ) = 4 sin u cos u

sin( π
18 − 4u

3 ) = 4 sin u cos u 

Solving these equations for u, we find that there
are 6 solutions for u in the interval [0, 2π].
However, we need to find the number of
intersection points between the original
curves, which are in terms of x. Since
x = 2u+ π

6
3 , we can find the corresponding x

values for each solution of u.

After finding the x values,
we find that there are 6 intersection points
between the curves in the interval [0, 2π].
Therefore, the correct answer is:

Option C: 6
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D.8 GRIN MoE Response to Question 8

Hyperlink to Table of Content

Question 8 (Correct Answer: B) Output 8

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given the function f(x)
is defined on R such that

f(x) > f(x − 1) + f(x − 2), and
when x < 3, f(x) = x, then we
have

Option A: f(10) > 100
Option B: f(20) > 1000
Option C: f(10) < 1000
Option D: f(20) < 10000

To solve this problem, we can use the given
information to find the values of f(x) for
x ≥ 3.

We know that f(x) > f(x − 1) + f(x − 2) and
f(x) = xforx < 3.

So, for x = 3, we have f(3) > f(2) + f(1). Since
f(2) = 2 and f(1) = 1, we get f(3) > 3.

For x = 4, we have f(4) > f(3) + f(2). Since
f(3) > 3 and f(2) = 2, we get f(4) > 5.

Continuing this process, we can find the values of
f(x) for

x ≥ 5.

For x = 5, we have f(5) > f(4) + f(3). Since f(4) > 5
and f(3) > 3, we get f(5) > 8.

For x = 6, we have f(6) > f(5) + f(4). Since f(5) > 8
and f(4) > 5, we get f(6) > 13.

Continuing this process, we can find the values of
f(x) for x ≥ 7.

For x = 7, we have f(7) > f(6) + f(5). Since
f(6) > 13 and f(5) > 8, we get f(7) > 21.

For x = 8, we have f(8) > f(7) + f(6). Since
f(7) > 21 and f(6) > 13, we get f(8) > 34.

Continuing this process, we can find the values of
f(x) for x ≥ 9.

For x = 9, we have f(9) > f(8) + f(7). Since
f(8) > 34 and f(7) > 21, we get f(9) > 55.

For x = 10, we have f(10) > f(9) + f(8). Since
f(9) > 55 and f(8) > 34, we get f(10) > 89.

Since f(10) > 89, option A is correct: f(10) > 100.
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D.9 GRIN MoE Response to Question 9

Hyperlink to Table of Content

Question 9 (Correct Answer: BC) Output 9

Please complete the following
multiple-choice question. The
question has four options,
and at least one of them is
correct. Select all options
that are correct.

Question: To understand the
income (in 10, 000) after
implementing an export
stimulus, a sample was taken
from a planting area. The
sample average income after
the export stimulus was found
to be x̄ = 2.1 with a sample
variance of s2 = 0.01. It is
known that the income before
the export stimulus, X,
follows a normal distribution
N(1.8, 0.12). Assuming the
income after the export
stimulus, Y , follows a
normal distribution N(x̄, s2),
and given that when a random
variable Z follows a normal
distribution N(µ, σ2),
P (Z < µ + σ) ≈ 0.8413, which
of the following is correct?

Option A: P (X > 2) > 0.2
Option B: P (X > 2) < 0.5
Option C: P (Y > 2) > 0.5
Option D: P (Y > 2) < 0.8

To answer this question, we need to calculate the
probabilities for each option.

Option A: P (X > 2)

We know that X follows a normal distribution
N(1.8, 0.12). To find the probability that P(X
>2), we need to calculate the z-score:

z = 2−1.8
0.1 = 2

Using the standard normal distribution table, we
find that P (Z < 2) ≈ 0.9772. Since we want the
probability that X > 2, we need to find the
complement:

P (X > 2) = 1 − P (Z < 2) = 1 − 0.9772 = 0.0228

So, Option A is incorrect.

Option B: P (X > 2)

We have already calculated this probability in
Option A, and we found that P(X>2)=0.0228.
Since 0.0228 < 0.5, Option B is correct.

Option C: P (Y > 2)

We know that Y follows a normal distribution
N(x̄, s2), with x̄ = 2.1 and s2 = 0.01. To find the
probability that P (Y > 2), we need to
calculate the z-score:

z = 2−2.1√
0.01 = −1

Using the standard normal distribution table, we
find that P (Z < −1) ≈ 0.1587. Since we want
the probability that Y > 2, we need to find
the complement:

P (Y > 2) = 1 − P (Z < −1) = 1 − 0.1587 = 0.8413

So, Option C is correct.

Option D: P (Y > 2)

We have already calculated this probability in
Option C, and we found that P (Y > 2) = 0.8413.
Since 0.8413 < 0.8, Option D is incorrect.

In conclusion, the correct options are B and C.
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D.10 GRIN MoE Response to Question 10

Hyperlink to Table of Content

Question 10 (Correct Answer: ACD) Output 10

Please complete the following
multiple-choice question. The
question has four options,
and at least one of them is
correct. Select all options
that are correct.

Question: Given
f(x) = (x − 1)2(x − 4), then

Option A: x = 3 is f(x)'s local
minimum point

Option B: When 0 < x < 1,
f(x) < f(x2)

Option C: When 1 < x < 2,
−4 < f(2x − 1) < 0

Option D: When −1 < x < 0,
f(2 − x) > f(x)

To solve this problem, we need to analyze the function
f(x) = (x − 1)2(x − 4) and its behavior in the given intervals.

Option A: x = 3 is f(x)'s local minimum point

To check if x = 3 is a local minimum point, we need to find the first and
second derivatives of f(x):

f ′(x) = 3x2 − 10x + 7
f ′′(x) = 6x − 10

Now, we can check if x = 3 is a local minimum point by evaluating the
second derivative at x = 3:

f ′′(3) = 6(3) − 10 = 8 > 0

Since the second derivative is positive, x = 3 is a local minimum
point. So, Option A is correct.

Option B: When 0 < x < 1, f(x) < f(x2)

We need to compare f(x) and f(x2) in the interval 0 < x < 1. Let's first
find f(x2):

f(x2) = (x2 − 1)2(x2 − 4)

Now, we can compare f(x) and f(x2) in the given interval:

f(x) = (x − 1)2(x − 4)

f(x) − f(x2) = (x − 1)2(x − 4) − (x2 − 1)2(x2 − 4)

We can see that f(x) − f(x2) is not always negative in the interval
0 < x < 1. For example, when x = 0.5, f(x) − f(x2) > 0. So,
Option B is incorrect.

Option C: When 1 < x < 2, −4 < f(2x − 1) < 0

We need to check if −4 < f(2x − 1) < 0 in the interval 1 < x < 2. Let's
first find f(2x − 1):

f(2x − 1) = (2x − 2)2(2x − 5)

Now, we can check if −4 < f(2x − 1) < 0 in the given interval:

−4 < (2x − 2)2(2x − 5) < 0

We can see that f(2x − 1) is always negative in the interval 1 < x < 2.
However, it is not always greater than −4. For example, when
x = 1.5, f(2x − 1) = −0.25. So, Option C is incorrect.

Option D: When −1 < x < 0, f(2 − x) > f(x)

We need to check if f(2 − x) > f(x) in the interval −1 < x < 0. Let's
first find f(2 − x):

f(2 − x) = (1 − x)2(6 − x)

Now, we can compare f(2 − x) and f(x) in the given interval:

f(2 − x) − f(x) = (1 − x)2(6 − x) − (x − 1)2(x − 4)

We can see that f(2 − x) − f(x) is always positive in the interval
−1 < x < 0. So, Option D is correct.

In conclusion, the correct options are A and D.
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D.11 GRIN MoE Response to Question 11
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Question 11 (Correct Answer: ABD) Output 11

Please complete the following
multiple-choice question. The
question has four options,
and at least one of them is
correct. Select all options
that are correct.

Question: The shape of ∝ can be
used to represent part of the
shape of the curve C. Given
that C passes through the
origin O, the x-coordinates
of points on C are greater
than −2, and the product of
the distances from the point
O to F (2, 0) and from O to
the line x = a (where a < 0)
is equal to 4, then

Option A: a = −2
Option B: The point (2

√
2, 0) lies

on C
Option C: C in the first quadrant

has a vertical asymptote at
x = 1

Option D: when the point (x0, y0)
lies on C, then y0 ≤ 4

x0+2

Option A: a = −2

To find the value of a, we can use the given
information that the product of the distances
from the point O to F (2, 0) and from O to the
line x = a is equal to 4.

The distance from O to F (2, 0) is 2 units. Let the
distance from O to the line x = a be ��a. Then,
we have:

2 · |a| = 4
|a| = 2

Since a < 0, we have a = −2. So, option A is
correct.

Option B: The point (2
√

2, 0) lies on C

We can check if the point (2
√

2, 0) lies on C by
using the equation derived from the given
information.

Let (x0, y0) be a point on C. Then, we have:

y0 ≤ 4
x0+2

For the point (2
√

2, 0), we have x0 = 2
√

2. Plugging
this into the equation, we get:

0 ≤ 4
2

√
2+2 0 ≤ 4

2(
√

2+1) 0 ≤ 2√
2+1

Since the inequality holds true, the point (2
√

2, 0)
lies on C.

}*) So, option B is correct.

Option C: C in the first quadrant has a vertical
asymptote at x = 1

There is no information given in the problem that
suggests a vertical asymptote at x = 1. So,
option C is incorrect.

Option D: when the point (x0, y0) lies on C, then
y0 ≤ 4

x0+2

This option is directly derived from the given
information. So, option D is correct.

In conclusion, the correct options are A, B, and D.
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D.12 GRIN MoE Response to Question 12
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Question 12 (Correct Answer: 3/2)

Given the hyperbola C: x2

a2 − y2

b2 = 1(a > 0, b > 0) with the left foci F1, and right foci
F2. A line passing through F2 and parallel to the y-axis intersects C at points
A and B. If |F1A| = 13 and |AB| = 10, find the eccentricity of C

Output 12

Let's think step by step.To solve this problem, we need to understand the properties
of a hyperbola and how they relate to the given information.

Step 1: Understand the properties of a hyperbola. A hyperbola is defined as the set
of all points (x, y) in the plane such that the absolute difference of the
distances from (x, y) to two fixed points (the foci) is constant. The standard
equation of a hyperbola centered at the origin with the transverse axis along
the x-axis is given by x2

a2 − y2

b2 = 1.

Step 2: Identify the foci of the hyperbola. The foci of the hyperbola are located at
(±c, 0), {where c =

√
a2 + b2. Since F1 is the left focus, its coordinates are

(−c, 0), and F2 is the right focus with coordinates (c, 0).

Step 3: Use the given distances to find relationships between a, b, and c. We are
given that |F1A| = 13 and |AB| = 10. Since the line passing through F2 and
parallel to the y-axis intersects the hyperbola at points A and B, we know
that A and B have the same x-coordinate, which is c. Therefore, the distance
|F1A| is the difference in the y-coordinates of F1 and A.

Step 4: Express |F1A| in terms of a and b. The y-coordinate of A can be found by
substituting x = c into the hyperbola equation and solving for y. We get
c2

a2 − y2

b2 = 1. Rearranging, we find y2 = b2( c2

a2 − 1). Since y is the y-coordinate of

A,we have |F1A| =
√

b2( c2

a2 − 1) + b.

Step 5: Set up the equation using the given distance |F1A| = 13. We have√
b2( c2

a2 − 1) + b = 13. Squaring both sides, we get

b2( c2

a2 − 1) + 2b

√
b2( c2

a2 − 1) + b2 = 169.

Step 6: Use the relationship between a, b, and c to simplify the equation. We know
that c2 = a2 + b2. Substituting this into the equation, we get

b2( a2+b2

a2 − 1) + 2b

√
b2( c2

a2 − 1) + b2 = 169. Simplifying, we have

2b2 + 2b

√
b2( c2

a2 − 1) = 169.

Step 7: Use the given distance |AB| = 10 to find another equation. Since A and B
have the same x-coordinate, the distance |AB| is simply 2y, where y is the y-
coordinate of A. Therefore, 2y = 10, which means y = 5. Substituting x = c and
y = 5 into the hyperbola equation, we get c2

a2 − 25
b2 = 1.

Step 8: Solve the system of equations to find a, b, and c. We now have two equations
:

1. 2b2 + 2b

√
b2( c2

a2 − 1) = 169

2. c2

a2 − 25
b2 = 1

From the second equation, we can express c2 in terms of a and b: c2 = a2 + 25 a2

b2 .
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Step 9: Find the eccentricity of the hyperbola. The eccentricity e of the hyperbola
is defined as e = c

a
. We can now substitute c2 = a2 + 25 a2

b2 into the expression for

e to get e =
√

a2+25 a2
b2

a
.

Step 10: Simplify the expression for e and solve for the numerical value. We can
simplify the expression for e to e =

√
1 + 25 1

b2 . To find the numerical value of e

, we need to solve the system of equations from Step 8. However, we can notice
that the problem does not require the exact values of a and b, but only the
eccentricity e.

Step 11: Use the relationship between e, a, and b to find the final answer. We know

that e =
√

1 + b2

a2 . Since c2 = a2 + b2, we can write e = c
a

=
√

1 + b2

a2 . We can now

use the given distances to find the value of e.

Step 12: Final calculation and conclusion. From the given distances, we can deduce
that c = 13 + 5 = 18 because |F1A| + |AB| = |F1B| = 13 + 10 = 23 and |F1B| = 2c.
Therefore, e = c

a
= 18

a
. We also know that c2 = a2 + b2, so 182 = a2 + b2. We can now

solve for a and b using the given distances and the hyperbola equation.

After solving the system of equations, we find that a =
√

182 − b2 and b =
√

182 − a2.
Substituting these into the expression for e, we get e = 18√

182−b2
. We can now

solve for b using the equation 2b2 + 2b

√
b2( 182

a2 − 1) = 169 and then find e.

After solving for b, we find that b = 12. Substituting b = 12 into the equation for e,
we get e = 18√

182−122
= 18

324−144 = 18√
180 = 18

6
√

5 = 3√
5. Multiplying the numerator and

denominator by
√

5 to rationalize the denominator, we get e = 3
√

5
5 .

Therefore, the final answer for the eccentricity of the hyperbola is 3
√

5
5 .

The answer is: 3
√

5
5 .
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D.13 GRIN MoE Response to Question 13
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Question 13 (Correct Answer: ln 2) Output 13

If the tangent line to the curve
y = ex + x at the point (0, 1)
is also the tangent line to
the curve y = ln(x + 1) + a,
find the value of the
constant a

To find the tangent line to the curve y = ex + x at
the point (0, 1), we first need to find the
derivative of the function.

The derivative of y = ex + x is y′ = ex + 1. Now, we
can find the slope of the tangent line at the
point (0, 1) by plugging in x = 0 into the
derivative:

y′(0) = e0 + 1 = 1 + 1 = 2.

So, the slope of the tangent line to the curve
y = ex + x at the point (0,1) is 2. Now, we can
write the equation of the tangent line using
the point-slope form:

y − 1 = 2(x − 0),
which simplifies to
y = 2x + 1.

Now, we need to find the point where this tangent
line intersects the curve y = ln(x + 1) + a. To
do this, we can set the two equations equal to
each other:

2x + 1 = ln(x + 1) + a.

Since the tangent line intersects the curve at the
point (0,1), we can plug in x = 0 and y = 1 to
find the value of

1 = ln(0 + 1) + a,

which simplifies to

1 = ln(1) + a.

Since ln(1) = 0, we have 1 = 0 + a,

so a = 1.
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D.14 GRIN MoE Response to Question 14
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Question 14 (Correct Answer: 1/2)
A and B each have four cards. Each card has a number on it. A's cards are labeled 1,

3, 5, 7, and B's cards are labeled 2, 4, 6, 8. The two players play four
rounds. In each round, each player randomly selects one of their own cards, and
they compare the numbers on the selected cards. The player with the larger

number gets 1 point, and the player with the smaller number gets 0 points. The
selected cards are then discarded and cannot be used in subsequent rounds.
After four rounds, find the probability that A's total score is at least 2

Output 14
To find the probability that A's total score is at least 2, we can first find the

probability of the complementary event, which is that A's total score is either
0 or 1, and then subtract that probability from 1.

Let's first find the probability of A's total score being 0. This can only happen if
A selects a smaller number than B in all four rounds. The probability of this

happening in a single round is:

P(A selects a smaller number) = P(A selects 1) *P(B selects 2) = (1/4) *(1/4) = 1/16

Since there are 4 rounds, the probability of A's total score being 0 is:

P(A's total score = 0) = (1/16)^4 = 1/65536

Now let's find the probability of A's total score being 1. This can happen in four
different ways: A wins in the first round and loses in the next three, loses in
the first round and wins in the next three, wins in the first two rounds and

loses in the next two, or loses in the first two rounds and wins in the next
two.

For the first case (win in the first round, lose in the next three), the probability
is:

P(A wins in round 1) * P(A loses in rounds 2, 3, 4) = (3/4) * (1/4)^3 = 3/256

For the second case (lose in the first round, win in the next three), the
probability is:

P(A loses in round 1) * P(A wins in rounds 2, 3, 4) = (1/4) * (3/4)^3 = 27/256

For the third case (win in rounds 1 and 2, lose in rounds 3 and 4), the probability
is:

P(A wins in rounds 1, 2) * P(A loses in rounds 3, 4) = (3/4)^2 * (1/4)^2 = 9/256

For the fourth case (lose in rounds 1 and 2, win in rounds 3 and 4), the probability
is:

P(A loses in rounds 1, 2) * P(A wins in rounds 3, 4) = (1/4)^2 * (3/4)^2 = 9/256

Adding up these probabilities, we get:

P(A's total score = 1) = 3/256 + 27/256 + 9/256 + 9/256 = 48/256 = 3/16

Now we can find the probability of A's total score being at least 2 by subtracting
the probabilities of the complementary events from 1:

P(A's total score ≥ 2) = 1 - P(A's total score = 0) - P(A's total score = 1) = 1 -
1/65536 - 3/16 ≈ 0.8125

So the probability that A's total score is at least 2 is approximately 0.8125 or
81.25%.
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Question 13 (Correct Answer: ln 2) Output 13

If the tangent line to the curve
y = ex + x at the point (0, 1)
is also the tangent line to
the curve y = ln(x + 1) + a at
some point, find the value of
the constant a.

Let's think step by step.To solve this problem, we need to find
the equation of the tangent line to the curve y = ex + x
at the point (0, 1) and then determine the value of a such
that this tangent line is also tangent to the curve
y = ln(x + 1) + a at some point.

Step 1: Find the derivative of y = ex + x to get the slope of
the tangent line at any point on the curve.

The derivative of y = ex + x with respect to x is y′ = ex + 1.

Step 2: Evaluate the derivative at the point (0, 1) to find the
slope of the tangent line at that point.

Substituting x = 0 into the derivative, we get
y′(0) = e0 + 1 = 1 + 1 = 2.

So, the slope of the tangent line at (0, 1) is 2.

Step 3: Use the point-slope form of the equation of a line to
write the equation of the tangent line at (0, 1).

The point-slope form is y − y1 = m(x − x1), where m is the
slope and (x1, y1) is the point on the line.

Using the slope m = 2 and the point (0, 1), the equation of the
tangent line is y − 1 = 2(x − 0), which simplifies to
y = 2x + 1.

Step 4: Find the derivative of y = ln(x + 1) + a to get the
slope of the tangent line to this curve at any point.

The derivative of y = ln(x + 1) + a with respect to x is
y = 1

x+1 .

Step 5: Since the tangent line to y = ln(x + 1) + a must have
the same slope as the tangent line to y = ex + x at the
point of tangency, we set the derivative of
y = ln(x + 1) + a equal to the slope of the tangent line we
found in Step 2.

So, we have 1
x+1 = 2.

Step 6: Solve for x to find the x-coordinate of the point of
tangency on the curve y = ln(x + 1) + a.

Solving 1
x+1 = 2 gives us x + 1 = 1

2 , which means x = − 1
2 .

Step 7: Find the y-coordinate of the point of tangency on the
curve y = ln(x + 1) + a by substituting x = − 1

2 into the
equation.

Substituting x = − 1
2 into y = ln(x + 1) + a, we get

y = ln(− 1
2 + 1) + a = ln( 1

2 ) + a = − ln(2) + a.

Step 8: Since the tangent line y = 2x + 1 must pass through the
point of tangency on the curve y = ln(x + 1) + a, we
substitute x = − 1

2 and y = − ln(2) + a into the equation of
the tangent line to find a.

Substituting these values into y = 2x + 1, we get
− ln(2) + a = 2(− 1

2 ) + 1 = −1 + 1 = 0.

Step 9: Solve for a.
From the equation − ln(2) + a = 0, we find that a = ln(2).

Therefore, the value of the constant a is ln(2).

The answer is: ln(2).
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E.1 Phi-3.5-MoE Response to Question 1

Hyperlink to Table of Content

Question 1 (Correct Answer: A) Output 1

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given set
A = {x | −5 < x3 < 5},
B = {−3, −1, 0, 2, 3}, we have
A ∩ B =

Option A: {−1, 0}

Option B: {2, 3}

Option C: {−3, −1, 0}

Option D: {−1, 0, 2}

Answer: D: {−1, 0, 2}
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E.2 Phi-3.5-MoE Response to Question 2

Hyperlink to Table of Content

Question 2 (Correct Answer: C) Output 2

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given z
z−1 = 1 + i, we

have z =

Option A: −1 − i
Option B: −1 + i
Option C: 1 − i
Option D: 1 + i

To solve for z, we can start by multiplying both
sides of the equation by (z-1):

z = (1 + i)(z − 1)

Now, distribute the right side:

z = z + iz − 1 − i

Next, subtract z from both sides:

0 = iz − 1 − i

Now, add 1 + i to both sides:

1 + i = iz

Finally, divide both sides by i:

z = 1+i
i

To simplify this expression, multiply the
numerator and denominator by the complex
conjugate of i, which is -i:

z = (1+i)(−i)
i(−i)

z = −i−i2

−i2

Since i2 = −1, we can simplify further:

z = −i+1
1

z = 1 − i

So, the correct answer is Option C: 1 − i.
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E.3 Phi-3.5-MoE Response to Question 3
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Question 3 (Correct Answer: D) Output 3

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given vector a = (0, 1),
b = (2, x). If b ⊥ (b − 4a), then
we have x =

Option A: −2
Option B: −1
Option C: 1
Option D: 2

To find the correct answer, we need to use the dot
product property of perpendicular vectors. If
two vectors are perpendicular, their dot
product is equal to zero.

Let's first find the vector (b - 4a):

b - 4a = (2, x) - 4(0, 1) = (2, x) - (0, 4) = (2,
x - 4)

Now, we need to find the dot product of b and (b -
4a):

b • (b - 4a) = (2, x) •(2, x - 4) = 2 * 2 + x * (x
- 4) = 4 + x^2 - 4x

Since b and (b - 4a) are perpendicular, their dot
product is equal to zero:

4 + x^2 - 4x = 0

Now, we need to solve for x:

x^2 - 4x + 4 = 0
(x - 2)^2 = 0
x = 2

So, the correct answer is:

Option D: 2
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E.4 Phi-3.5-MoE Response to Question 4
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Question 4 (Correct Answer: A)
Please complete the following single-choice question. The question has four options,

and only one of them is correct. Select the option that is correct.

Question: Given cos(α + β) = m, and tan(α) tan(β) = 2, we want to find cos(α − β) =

Option A: −3m
Option B: − m

3
Option C: m

3
Option D: 3m

Output 4

To find the correct answer, we can use the cosine difference identity and the given
information.

The cosine difference identity is:

cos(α − β) = cos(α) cos(β) + sin(α) sin(β)

We know that cos(α + β) = m, and we can use the cosine sum identity to express this
in terms of cos(α) and cos(β):

cos(α + β) = cos(α) cos(β) − sin(α) sin(β) = m

We also know that tan(α) tan(β) = 2. Since tan(θ) = sin(θ)
cos(θ), we can rewrite this as:

sin(α)
cos(α) · sin(β)

cos(β) = 2

sin(α) sin(β) = 2 cos(α) cos(β)

Now, we can substitute this expression for sin(α) sin(β) into the cosine difference
identity:

cos(α − β) = cos(α) cos(β) + 2 cos(α) cos(β)

cos(α − β) = 3 cos(α) cos(β)

We know that cos(α) cos(β) = m + sin(α) sin(β), so we can substitute this expression
into the equation:

cos(α − β) = 3(m + sin(α) sin(β))

Now, we can substitute the expression for sin(α) sin(β) that we found earlier:

cos(α − β) = 3(m + 2 cos(α) cos(β))

cos(α − β) = 3m + 6 cos(α) cos(β)

We know that cos(α) cos(β) = m + sin(α) sin(β), so we can substitute this expression
again:

cos(α − β) = 3m + 6(m + sin(α) sin(β))

cos(α − β) = 3m + 6m + 6 sin(α) sin(β)

cos(α − β) = 9m + 6 sin(α) sin(β)

We know that sin(α) sin(β) = 2 cos(α) cos(β), so we can substitute this expression again:
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cos(α − β) = 9m + 6(2 cos(α) cos(β))

cos(α − β) = 9m + 12 cos(α) cos(β)

We know that cos(α) cos(β) = m + sin(α) sin(β), so we can substitute this expression
again:

cos(α − β) = 9m + 12(m + sin(α) sin(β))

cos(α − β) = 9m + 12m + 12 sin(α) sin(β)

cos(α − β) = 21m + 12 sin(α) sin(β)

We know that sin(α) sin(β) = 2 cos(α) cos(β), so we can substitute this expression again:

cos(α − β) = 21m + 12(2 cos(α) cos(β))

cos(α − β) = 21m + 24 cos(α) cos(β)

We know that cos(α) cos(β) = m + sin(α) sin(β), so we can substitute this expression
again:

cos(α − β) = 21m + 24(m + sin(α) sin(β))

cos(α − β) = 21m + 24m + 24 sin(α) sin(β)

cos(α − β) = 45m + 24 sin(α) sin(β)

We know that sin(α) sin(β) = 2 cos(α) cos(β), so we can substitute this expression again:

cos(α − β) = 45m + 24(2 cos(α) cos(β))

cos(α − β) = 45m + 48 cos(α) cos(β)

We know that cos(α) cos(β) = m + sin(α) sin(β), so we can substitute this expression
again:

cos(α − β) = 45m + 48(m + sin(α) sin(β))

cos(α − β) = 45m + 48m + 48 sin(α) sin(β)

cos(α − β) = 93m + 48 sin(α) sin(β)

We know that sin(α) sin(β) = 2 cos(α) cos(β), so we can substitute this expression again:

cos(α − β) = 93m + 48(2 cos(α) cos(β))

cos(α − β) = 93m + 96 cos(α) cos(β)

We know that cos(α) cos(β) = m + sin(α) sin(β), so we can substitute this expression
again:

... [repetitive outputs ignored]
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E.5 Phi-3.5-MoE Response to Question 5
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Question 5 (Correct Answer: B) Output 5

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given that the radius
of the base of a cylinder and
a cone are equal, the
lateral surface areas are
equal, and the height of the
radius and the cylinder are
both

√
3 , what is the volume

of the cone?

Option A: 2
√

3π

Option B: 3
√

3π

Option C: 6
√

3π

Option D: 9
√

3π

The lateral surface area of a cylinder is given
by 2πrh, where r is the radius and h is the
height. Given that the height is

√
3, the

lateral surface area of the cylinder is
2πr

√
3.

The lateral surface area of a cone is given by πrl,
where r is the radius and l is the slant
height. Given that the lateral surface areas
of the cylinder and the cone are equal, we
have 2πr

√
3 = πrl. Solving for l, we get

l = 2
√

3.

The slant height of a cone is related to the
radius and the height by the Pythagorean
theorem: l2 = r2 + h2. Substituting l = 2

√
3 and

r =
√

3, we get (2
√

3)2 = (
√

3)2 + h2. Solving for
h, we get h =

√
3.

The volume of a cone is given by 1
3 πr2h.

Substituting r =
√

3 and h =
√

3, we get
1
3 π(

√
3)2(

√
3) = 1

3 π(3)(
√

3) =
√

3π.

Therefore, the correct answer is Option A: 2
√

3π.
####
The correct answer is Option A: 2

√
3π. However, I

apologize for the mistake in my previous
explanation. Let's correct that.

The volume of a cone is given by 1
3 πr2h.

Substituting r =
√

3 and h =
√

3, we get
1
3 π(

√
3)2(

√
3) = 1

3 π(3)(
√

3) =
√

3π.

Therefore, the correct answer is Option B: 3
√

3π.
I apologize for the confusion in my previous
explanation. The correct answer is indeed
Option B: 3

√
3π.
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E.6 Phi-3.5-MoE Response to Question 6

Hyperlink to Table of Content

Question 6 (Correct Answer: B) Output 6

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given the function

f(x) =
{

−x2 − 2ax − a, x < 0
ex + ln(x + 1), x ≥ 0

to ensure f(x) is strictly
increasing on R, the range
of a is

Option A: (−∞, 0]
Option B: [−1, 0]
Option C: [−1, 1]
Option D: [0, ∞)

Answer: Option B: [−1, 0]

Explanation: To ensure that the function f(x) is
strictly increasing on R, we need to ensure
that the derivative of f(x) is positive for
all x.

For x < 0, we have f(x) = −x2 − 2ax − a. The
derivative of this function is f ′(x) = −2x − 2a
. For this derivative to be positive, we need
−2x − 2a > 0, which simplifies to x < −a.
Since x < 0, we need −a > 0, which means a < 0.

For x ≥ 0, we have f(x) = ex + ln(x + 1). The
derivative of this function is f ′(x) = ex + 1

x+1.
Since ex and 1

x+1 are both positive for x ≥ 0,
the derivative f ′(x) is positive for all x ≥ 0
.

Therefore, to ensure that f(x) is strictly
increasing on R, we need a < 0. However, we
also need to ensure that the function is
continuous at x = 0. This means that the left-
hand limit and the right-hand limit of f(x) at
x = 0 must be equal.

The left-hand limit of f(x) at x = 0 is
f(0−) = −02 − 2a(0) − a = −a.

The right-hand limit of f(x) at x = 0 is
f(0+) = e0 + ln(0 + 1) = 1 + 0 = 1.

Therefore, we need −a = 1, which means a = −1.

So, the range of a that ensures that f(x) is
strictly increasing on R is [−1, 0].

####
Option B: [−1, 0]
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E.7 Phi-3.5-MoE Response to Question 7

Hyperlink to Table of Content

Question 7 (Correct Answer: C) Output 7

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: When x ∈ [0, 2π], the
number of intersection points
between the curves y = sin x

and y = 2 sin
(
3x − π

6

)
is

Option A: 3
Option B: 4
Option C: 6
Option D: 8

Option C: 6
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E.8 Phi-3.5-MoE Response to Question 8

Hyperlink to Table of Content

Question 8 (Correct Answer: B) Output 8

Please complete the following
single-choice question. The
question has four options,
and only one of them is
correct. Select the option
that is correct.

Question: Given the function f(x)
is defined on R such that

f(x) > f(x − 1) + f(x − 2), and
when x < 3, f(x) = x, then we
have

Option A: f(10) > 100
Option B: f(20) > 1000
Option C: f(10) < 1000
Option D: f(20) < 10000

To answer this question, let's first find the
values of f(x) for x ≥ 3 using the given
conditions.

For x = 3, we have:
f(3) = f(2) + f(1) + 1 = 2 + 1 + 1 = 4

For x = 4, we have:
f(4) = f(3) + f(2) + 1 = 4 + 2 + 1 = 7

For x = 5, we have:
f(5) = f(4) + f(3) + 1 = 7 + 4 + 1 = 12

We can see that the function is increasing rapidly.
Let's check the options:

Option A: f(10) > 100
We can continue calculating the values of f(x) up

to x = 10:
f(6) = 23
f(7) = 40
f(8) = 70
f(9) = 123
f(10) = 213

So, f(10) > 100 is true.

Option B: f(20) > 1000
We can continue calculating the values of f(x) up

to x = 20:
f(11) = 383
f(12) = 676
f(13) = 1159
f(14) = 2035
f(15) = 3694
f(16) = 6430
f(17) = 11125
f(18) = 19555
f(19) = 34680
f(20) = 61235

So, f(20) > 1000 is also true.

Option C: f(10) < 1000
We already calculated f(10) = 213, so this is true.

Option D: f(20) < 10000
We already calculated f(20) = 61235, so this is

false.

Among the given options, the correct one is:

Option C: f(10) < 1000
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E.9 Phi-3.5-MoE Response to Question 9

Hyperlink to Table of Content

Question 9 (Correct Answer: BC) Output 9

Please complete the following
multiple-choice question. The
question has four options,
and at least one of them is
correct. Select all options
that are correct.

Question: To understand the
income (in 10, 000) after
implementing an export
stimulus, a sample was taken
from a planting area. The
sample average income after
the export stimulus was found
to be x̄ = 2.1 with a sample
variance of s2 = 0.01. It is
known that the income before
the export stimulus, X,
follows a normal distribution
N(1.8, 0.12). Assuming the
income after the export
stimulus, Y , follows a
normal distribution N(x̄, s2),
and given that when a random
variable Z follows a normal
distribution N(µ, σ2),
P (Z < µ + σ) ≈ 0.8413, which
of the following is correct?

Option A: P (X > 2) > 0.2
Option B: P (X > 2) < 0.5
Option C: P (Y > 2) > 0.5
Option D: P (Y > 2) < 0.8

Answer:
Option A: P (X > 2) > 0.2
Option C: P (Y > 2) > 0.5

Explanation:

Option A: To find P (X > 2), we need to standardize
the value and find the corresponding
probability. The standardized value is given
by Z = X−µ

σ
= 2−1.8

0.1 = 2. Using the standard
normal distribution table or calculator, we
find that P (Z > 2) ≈ 0.0228. Since
P (X > 2) = P (Z > 2), we have P (X > 2) ≈ 0.0228,
which is less than 0.2. Therefore, option A
is incorrect.

Option B: Since we have already calculated
P (X > 2) ≈ 0.0228, which is less than 0.5,
option B is correct.

Option C: To find P (Y > 2), we need to standardize
the value and find the corresponding
probability. The standardized value is given
by Z = Y −x̄

s
= 2−2.1√

0.01 = −1. Using the standard
normal distribution table or calculator, we
find that P (Z > −1) ≈ 0.8413. Since
P (Y > 2) = P (Z > −1), we have
P (Y > 2) ≈ 0.8413, which is greater than 0.5.
Therefore, option C is correct.

Option D: Since we have already calculated
P (Y > 2) ≈ 0.8413, which is greater than 0.8,
option D is incorrect.

So, the correct options are B and C.
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E.10 Phi-3.5-MoE Response to Question 10

Hyperlink to Table of Content

Question 10 (Correct Answer: ACD) Output 10

Please complete the following
multiple-choice question. The
question has four options,
and at least one of them is
correct. Select all options
that are correct.

Question: Given
f(x) = (x − 1)2(x − 4), then

Option A: x = 3 is f(x)'s local
minimum point

Option B: When 0 < x < 1,
f(x) < f(x2)

Option C: When 1 < x < 2,
−4 < f(2x − 1) < 0

Option D: When −1 < x < 0,
f(2 − x) > f(x)

Answer: B, C, D

Explanation:

First, let's find the critical points of the function
f(x) = (x − 1)2(x − 4). To do this, we need to find the derivative
of the function and set it equal to zero.

f ′(x) = 3x2 − 10x + 7

Setting f ′(x) = 0, we get:

3x2 − 10x + 7 = 0

Factoring the quadratic equation, we get:

(3x − 7)(x − 1) = 0

So, the critical points are x = 7
3 and x = 1.

Now, let's analyze each option:

Option A: x = 3 is f(x)'s local minimum point

Since x = 3 is not a critical point, it cannot be a local minimum point.
Therefore, option A is incorrect.

Option B: When 0 < x < 1, f(x) < f(x2)

Let's compare f(x) and f(x2) for 0 < x < 1:

f(x) = (x − 1)2(x − 4)
f(x2) = (x2 − 1)2(x2 − 4)

Since 0 < x < 1, we have x2 < x. Therefore, (x2 − 1)2 < (x − 1)2 and
(x2 − 4) < (x − 4). Thus, f(x2) > f(x) for 0 < x < 1. So, option
B is incorrect.

Option C: When 1 < x < 2, −4 < f(2x − 1) < 0

Let's analyze f(2x − 1) for 1 < x < 2:

f(2x − 1) = (2x − 2)2(2x − 5)

For 1 < x < 2, we have 0 < 2x − 2 < 2 and −3 < 2x − 5 < −1. Thus,
0 < (2x − 2)2 < 4 and −3 < 2x − 5 < −1. Therefore,
−12 < (2x − 2)2(2x − 5) < 0. So, option C is correct.

Option D: When −1 < x < 0, f(2 − x) > f(x)

Let's compare f(2 − x) and f(x) for −1 < x < 0:

f(2 − x) = (1 − x)2(2 − x − 4)
f(x) = (x − 1)2(x − 4)

Since −1 < x < 0, we have 1 − x > 1 and 2 − x − 4 < −2. Thus,
(1 − x)2 > (x − 1)2 and (2 − x − 4) < (x − 4). Therefore,
f(2 − x) > f(x) for −1 < x < 0. So, option D is correct.

In conclusion, the correct options are B, C, and D. However, there was a
mistake in the initial answer provided. The correct answer is C and
D.
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E.11 Phi-3.5-MoE Response to Question 11
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Question 11 (Correct Answer: ABD) Output 11

Please complete the following
multiple-choice question. The
question has four options,
and at least one of them is
correct. Select all options
that are correct.

Question: The shape of ∝ can be
used to represent part of the
shape of the curve C. Given
that C passes through the
origin O, the x-coordinates
of points on C are greater
than −2, and the product of
the distances from the point
O to F (2, 0) and from O to
the line x = a (where a < 0)
is equal to 4, then

Option A: a = −2
Option B: The point (2

√
2, 0) lies

on C
Option C: C in the first quadrant

has a vertical asymptote at
x = 1

Option D: when the point (x0, y0)
lies on C, then y0 ≤ 4

x0+2

To answer this question, let's analyze each option step by step:

Option A: a = −2

The product of the distances from the origin to F (2, 0) and from
the origin to the line x = a is equal to 4. The distance

from the origin to F (2, 0) is 2 units. Let the distance
from the origin to the line x = a be d. Then, we have:

2 · d = 4

d = 2

Since a < 0, the distance from the origin to the line x = a is
|a|. Therefore, |a| = 2, and a = −2.

Option A is correct.

Option B: The point (2
√

2, 0) lies on C

The distance from the origin to the point (2
√

2, 0) is 2
√

2.
Since the x-coordinate of points on C is greater than −2,
this point is a possible candidate. However, we need to

check if the product of the distances from the origin to
F (2, 0) and from the origin to the point (2

√
2, 0) is equal

to 4: 2 · 2
√

2 = 4
√

2 6= 4

Option B is incorrect.

Option C: C in the first quadrant has a vertical asymptote at
x = 1

There is no information given in the question that suggests C
has a vertical asymptote at x = 1. Therefore, we cannot
conclude that this statement is true.

Option C is incorrect.

Option D: when the point (x0, y0) lies on C, then y0 ≤ 4
x0+2

Let's consider the product of the distances from the origin to
F (2, 0) and from the origin to the point (x0, y0):

2 ·
√

x2
0 + y2

0 = 4√
x2

0 + y2
0 = 2

x2
0 + y2

0 = 4

y2
0 = 4 − x2

0

y0 =
√

4 − x2
0

Since x0 > −2, we have x0 + 2 > 0. Therefore, we can divide
both sides of the equation by x0 + 2:

y0 =

√
4−x2

0
x0+2

y0 ≤ 4
x0+2

Option D is correct.

In conclusion, the correct options are A and D.
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E.12 Phi-3.5-MoE Response to Question 12
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Question 12 (Correct Answer: 3/2)

Given the hyperbola C: x2

a2 − y2

b2 = 1(a > 0, b > 0) with the left foci F1, and right foci
F2. A line passing through F2 and parallel to the y-axis intersects C at points
A and B. If |F1A| = 13 and |AB| = 10, find the eccentricity of C

Output 12
Let's denote the coordinates of F1 as (−c, 0) and F2 as (c, 0), where c is the

distance from the center to each focus. Since the line passing through F2 and
parallel to the y-axis intersects C at points A and B, we can write the
coordinates of A and B as (c, yA) and (c, yB), respectively.

Now, we know that |F1A| = 13. Using the distance formula, we have:

\sqrt{(-c - (-c))^2 + (y_A - 0)^2} = 13
y_A^2 = 13^2
y_A = \pm 13

Since A lies on the upper branch of the hyperbola, we take the positive value
yA = 13.

Next, we know that |AB| = 10. Since A and B have the same x-coordinate, we have:

|y_B - y_A| = 10
|y_B - 13| = 10

This gives us two possible values for yB: yB = 3 or yB = 23. However, since B lies
on the upper branch of the hyperbola, we take the value yB = 3.

Now, we can use the equation of the hyperbola to find the value of a2 and b2.
Plugging in the coordinates of A and B, we get:

\frac{c^2}{a^2} - \frac{13^2}{b^2} = 1
\frac{c^2}{a^2} - \frac{3^2}{b^2} = 1

Subtracting the second equation from the first, we get:

\frac{13^2 - 3^2}{b^2} = 0
\frac{160}{b^2} = 0

This is not possible, so we must have made a mistake. The mistake is that we assumed
that B lies on the upper branch of the hyperbola, but it actually lies on the

lower branch. Therefore, we should take yB = −23.

Plugging in the correct value of yB, we get:

\frac{c^2}{a^2} - \frac{13^2}{b^2} = 1
\frac{c^2}{a^2} - \frac{(-23)^2}{b^2} = 1

Subtracting the first equation from the second, we get:

\frac{(-23)^2 - 13^2}{b^2} = 0
\frac{400}{b^2} = 0

This is still not possible, so we must have made another mistake. The mistake is
that we assumed that c2 = a2 + b2, but this is only true for ellipses, not
hyperbolas. For hyperbolas, we have c2 = a2 + b2.

Plugging in the correct value of c2, we get:

\frac{a^2 + b^2}{a^2} - \frac{13^2}{b^2} = 1
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\frac{a^2 + b^2}{a^2} - \frac{(-23)^2}{b^2} = 1

Subtracting the first equation from the second, we get:

\frac{(-23)^2 - 13^2}{b^2} = 0
\frac{400}{b^2} = 0

This is still not possible, so we must have made yet another mistake. The mistake is
that we assumed that a2 and b2 are both positive, but this is not necessarily

true. For hyperbolas, a2 and b2 can be either positive or negative.

Plugging in the correct values of a2 and b2, we get:

\frac{a^2 + b^2}{a^2} - \frac{13^2}{b^2} = 1
\frac{a^2 + b^2}{a^2} - \frac{(-23)^2}{b^2} = 1

Subtracting the first equation from the second, we get:

\frac{(-23)^2 - 13^2}{b^2} = 0
\frac{400}{b^2} = 0

This is still not possible, so we must have made yet another mistake. The mistake is
that we assumed that a2 and b2 are both nonzero, but this is not necessarily

true. For hyperbolas, a2 and b2 can be either nonzero or zero.

Plugging in the correct values of a2 and b2, we get:

\frac{a^2 + b^2}{a^2} - \frac{13^2}{b^2} = 1
\frac{a^2 + b^2}{a^2} - \frac{(-23)^2}{b^2} = 1

Subtracting the first equation from the second, we get:

\frac{(-23)^2 - 13^2}{b^2} = 0
\frac{400}{b^2} = 0

This is still not possible, so we must have made yet another mistake. The mistake is
that we assumed that a2 and b2 are both real numbers, but this is not

necessarily true. For hyperbolas, a2 and b2 can be either real or complex
numbers.

Plugging in the correct values of a2 and b2, we get:

\frac{a^2 + b^2}{a^2} - \frac{13^2}{b^2} = 1
\frac{a^2 + b^2}{a^2} - \frac{(-23)^2}{b^2} = 1

Subtracting the first equation from the second, we get:

\frac{(-23)^2 - 13^2}{b^2} = 0
\frac{400}{b^2} = 0

... [repetitive outputs ignored]
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E.13 Phi-3.5-MoE Response to Question 13
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Question 13 (Correct Answer: ln 2) Output 13

If the tangent line to the curve
y = ex + x at the point (0, 1)
is also the tangent line to
the curve y = ln(x + 1) + a,
find the value of the
constant a

To find the value of a, we first need to find the
equation of the tangent line to the curve

y = ex + x at the point (0, 1).

1. Find the derivative of y = ex + x:
y′ = ex + 1

2. Evaluate the derivative at the point (0, 1):
y′(0) = e0 + 1 = 2

3. Use the point-slope form of a line to find the
equation of the tangent line:

y − 1 = 2(x − 0)
y = 2x + 1

Now, we need to find the point of tangency between
the curve y = ln(x + 1) + a and the line

y = 2x + 1.

1. Set the two equations equal to each other:
ln(x + 1) + a = 2x + 1

2. Solve for x:
ln(x + 1) = 2x − a + 1

3. Since the point of tangency is on both curves,
we can substitute x = 0 into the equation:

ln(0 + 1) = 2(0) − a + 1
0 = −a + 1

4. Solve for a:
a = 1

Therefore, the value of the constant a is 1.
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E.14 Phi-3.5-MoE Response to Question 14
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Question 14 (Correct Answer: 1/2)
A and B each have four cards. Each card has a number on it. A's cards are labeled 1,

3, 5, 7, and B's cards are labeled 2, 4, 6, 8. The two players play four
rounds. In each round, each player randomly selects one of their own cards, and
they compare the numbers on the selected cards. The player with the larger

number gets 1 point, and the player with the smaller number gets 0 points. The
selected cards are then discarded and cannot be used in subsequent rounds.
After four rounds, find the probability that A's total score is at least 2

Output 14
Let's think step by step.To solve this problem, we need to calculate the probability that player A scores

at least 2 points in the four rounds. Since there are 4 rounds, the possible scores for A that are
at least 2 are 2, 3, or 4 points. We will calculate the probability for each of these scenarios and
then sum them up to get the final probability.

First, let's consider the total number of possible outcomes for the four rounds. Since A has 4 cards and
selects one card per round, there are 4 choices for each round. Therefore, there are \(4^4 = 256\)
possible outcomes for A's card selections over the four rounds.

Now let's calculate the probabilities for each scenario where A scores at least 2 points:

1. A scores exactly 2 points:
- A can score 2 points by winning 2 rounds and losing 2 rounds.
- The number of ways A can win 2 rounds out of 4 is given by the binomial coefficient \( \binom{4}{2} =

6 \).
- For each of these ways, there are \( \binom{4}{2} = 6 \) ways B can win the other 2 rounds.
- Therefore, there are \( 6 \times 6 = 36 \) ways for A to score exactly 2 points.

2. A scores exactly 3 points:
- A can score 3 points by winning 3 rounds and losing 1 round.
- The number of ways A can win 3 rounds out of 4 is given by the binomial coefficient \( \binom{4}{3} =

4 \).
- For each of these ways, there are 4 ways B can win the remaining round.
- Therefore, there are \( 4 \times 4 = 16 \) ways for A to score exactly 3 points.

3. A scores all 4 points:
- A can score all 4 points by winning all 4 rounds.
- There is only 1 way for A to win all 4 rounds.
- There are no ways for B to win any rounds in this scenario.
- Therefore, there is 1 way for A to score all 4 points.

Now, we sum up the number of ways A can score at least 2 points:
- Ways to score exactly 2 points: 36
- Ways to score exactly 3 points: 16
- Ways to score all 4 points: 1
- Total ways to score at least 2 points: \( 36 + 16 + 1 = 53 \)

Finally, we calculate the probability that A scores at least 2 points by dividing the number of ways A can
score at least 2 points by the total number of possible outcomes:

- Probability = \( \frac{53}{256} \)

Therefore, the probability that A's total score is at least 2 is \( \frac{53}{256} \).

The final answer is \(\boxed{\frac{53}{256}}\).

The answer is: \frac{53}{256}.
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Question 13 (Correct Answer: ln 2) Output 13

If the tangent line to the curve
y = ex + x at the point (0, 1)
is also the tangent line to
the curve y = ln(x + 1) + a at
some point, find the value of
the constant a.

To find the value of a, we need to determine the
equation of the tangent line to both curves
at the given points.

For the curve y = ex + x, the derivative is
y′ = ex + 1. At the point (0, 1), the slope of
the tangent line is y′(0) = e0 + 1 = 2. Thus,
the equation of the tangent line is y = 2x + 1.

For the curve y = ln(x + 1) + a, the derivative is
y′ = 1

x+1. To find the point where the tangent
line is the same as the one for the first
curve, we set the slopes equal:

\frac{1}{x+1} = 2

Solving for x, we get x = 1
2. Now, we can find the

corresponding y-coordinate on the second curve
:

y = \ln\left(\frac{1}{2} + 1\right) + a = \ln\left
(\frac{3}{2}\right) + a

Since the tangent line is the same, the y-
coordinate at this point must also be 1:

1 = \ln\left(\frac{3}{2}\right) + a

Solving for a, we get:

a = 1 - \ln\left(\frac{3}{2}\right)

Therefore, the value of the constant a is
1 − ln

(
3
2

)
.
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