--- base_model: michaelyli/sd-dsprites-incorrect_counterfactual_coupled_factors library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- # Text-to-image finetuning - michaelyli/sd-dsprites-counterfactual-exp-decouple_factors-iter-0 This pipeline was finetuned from **michaelyli/sd-dsprites-incorrect_counterfactual_coupled_factors** on the **michaelyli/dsprites-counterfactual-exp-decouple_factors-filtered-iter-0** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A square.', 'A ellipse.', 'A heart.']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("michaelyli/sd-dsprites-counterfactual-exp-decouple_factors-iter-0", torch_dtype=torch.float16) prompt = "A square." image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 400 * Learning rate: 1e-05 * Batch size: 100 * Gradient accumulation steps: 1 * Image resolution: 64 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://microsoft-research.wandb.io/t-michaelli/sd-dsprites-counterfactual-exp-decouple_factors-iter-0/runs/wkl7e3m7). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]