File size: 2,524 Bytes
f3d7379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
model-index:
- name: roberta-largemhr2004-atomic.anion.train.no1e-06-128
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-largemhr2004-atomic.anion.train.no1e-06-128

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3645

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 512
- eval_batch_size: 1024
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.6351        | 1.0   | 576   | 0.4929          |
| 0.4755        | 2.0   | 1152  | 0.4313          |
| 0.4406        | 3.0   | 1728  | 0.4136          |
| 0.4208        | 4.0   | 2304  | 0.4072          |
| 0.4089        | 5.0   | 2880  | 0.3982          |
| 0.3989        | 6.0   | 3456  | 0.3869          |
| 0.3913        | 7.0   | 4032  | 0.3837          |
| 0.3836        | 8.0   | 4608  | 0.3793          |
| 0.3766        | 9.0   | 5184  | 0.3793          |
| 0.3715        | 10.0  | 5760  | 0.3754          |
| 0.3669        | 11.0  | 6336  | 0.3726          |
| 0.3653        | 12.0  | 6912  | 0.3681          |
| 0.3594        | 13.0  | 7488  | 0.3697          |
| 0.3534        | 14.0  | 8064  | 0.3725          |
| 0.353         | 15.0  | 8640  | 0.3678          |
| 0.3509        | 16.0  | 9216  | 0.3651          |
| 0.3474        | 17.0  | 9792  | 0.3635          |
| 0.3467        | 18.0  | 10368 | 0.3676          |
| 0.3428        | 19.0  | 10944 | 0.3631          |
| 0.3408        | 20.0  | 11520 | 0.3668          |
| 0.3373        | 21.0  | 12096 | 0.3645          |
| 0.3397        | 22.0  | 12672 | 0.3645          |


### Framework versions

- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1