--- library_name: transformers license: mit base_model: mhr2004/roberta-large-pp-500000-1e-06-128 tags: - generated_from_trainer model-index: - name: roberta-large-pp-500000-1e-06-128-negcommonsensebalanced-1e-06-64 results: [] --- # roberta-large-pp-500000-1e-06-128-negcommonsensebalanced-1e-06-64 This model is a fine-tuned version of [mhr2004/roberta-large-pp-500000-1e-06-128](https://huggingface.co/mhr2004/roberta-large-pp-500000-1e-06-128) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 256 - eval_batch_size: 1024 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.5214 | 1.0 | 795 | 0.4808 | | 0.4627 | 2.0 | 1590 | 0.4284 | | 0.4322 | 3.0 | 2385 | 0.4102 | | 0.4075 | 4.0 | 3180 | 0.3885 | | 0.3858 | 5.0 | 3975 | 0.3778 | | 0.3741 | 6.0 | 4770 | 0.3692 | | 0.3632 | 7.0 | 5565 | 0.3628 | | 0.3502 | 8.0 | 6360 | 0.3584 | | 0.3412 | 9.0 | 7155 | 0.3551 | | 0.3293 | 10.0 | 7950 | 0.3609 | | 0.3234 | 11.0 | 8745 | 0.3475 | | 0.3112 | 12.0 | 9540 | 0.3456 | | 0.3067 | 13.0 | 10335 | 0.3451 | | 0.3011 | 14.0 | 11130 | 0.3437 | | 0.296 | 15.0 | 11925 | 0.3457 | | 0.2856 | 16.0 | 12720 | 0.3424 | | 0.2837 | 17.0 | 13515 | 0.3402 | | 0.2789 | 18.0 | 14310 | 0.3404 | | 0.2758 | 19.0 | 15105 | 0.3401 | | 0.2702 | 20.0 | 15900 | 0.3393 | | 0.2708 | 21.0 | 16695 | 0.3439 | | 0.2628 | 22.0 | 17490 | 0.3378 | | 0.2625 | 23.0 | 18285 | 0.3432 | | 0.259 | 24.0 | 19080 | 0.3409 | | 0.2572 | 25.0 | 19875 | 0.3431 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0