huseinzol05 commited on
Commit
fd2bacd
·
verified ·
1 Parent(s): ad41c5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -6
README.md CHANGED
@@ -1,17 +1,26 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
  # Malay Parler TTS Mini V1
7
 
8
- Finetuned https://huggingface.co/parler-tts/parler-tts-mini-v1 on Malay TTS dataset https://huggingface.co/datasets/mesolitica/tts-combine-annotated
9
 
10
  Source code at https://github.com/mesolitica/malaya-speech/tree/master/session/parler-tts
11
 
12
  Wandb at https://wandb.ai/huseinzol05/parler-speech?nw=nwuserhuseinzol05
13
 
14
- ## how-to
 
 
 
 
 
 
15
 
16
  ```python
17
  import torch
@@ -40,10 +49,16 @@ prompt = 'Husein zolkepli sangat comel dan kacak suka makan cendol'
40
  for s in speakers:
41
  description = f"{s}'s voice, delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
42
 
43
- input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
44
- prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
 
 
 
 
 
 
 
45
 
46
- generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
47
  audio_arr = generation.cpu()
48
  sf.write(f'{s}.mp3', audio_arr.numpy().squeeze(), 44100)
49
  ```
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - mesolitica/tts-combine-annotated
5
+ language:
6
+ - ms
7
  ---
8
 
9
  # Malay Parler TTS Mini V1
10
 
11
+ Finetuned https://huggingface.co/parler-tts/parler-tts-mini-v1 on [Malay TTS dataset](https://huggingface.co/datasets/mesolitica/tts-combine-annotated)
12
 
13
  Source code at https://github.com/mesolitica/malaya-speech/tree/master/session/parler-tts
14
 
15
  Wandb at https://wandb.ai/huseinzol05/parler-speech?nw=nwuserhuseinzol05
16
 
17
+ ## requirements
18
+
19
+ ```bash
20
+ pip3 install git+https://github.com/mesolitica/async-parler-tts
21
+ ```
22
+
23
+ ## how to
24
 
25
  ```python
26
  import torch
 
49
  for s in speakers:
50
  description = f"{s}'s voice, delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
51
 
52
+ input_ids = tokenizer(description, return_tensors="pt").to(device)
53
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").to(device)
54
+
55
+ generation = model.generate(
56
+ input_ids=input_ids.input_ids,
57
+ attention_mask=input_ids.attention_mask,
58
+ prompt_input_ids=prompt_input_ids.input_ids,
59
+ prompt_attention_mask=prompt_input_ids.attention_mask,
60
+ )
61
 
 
62
  audio_arr = generation.cpu()
63
  sf.write(f'{s}.mp3', audio_arr.numpy().squeeze(), 44100)
64
  ```