Update README.md
Browse files
README.md
CHANGED
@@ -1,17 +1,26 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Malay Parler TTS Mini V1
|
7 |
|
8 |
-
Finetuned https://huggingface.co/parler-tts/parler-tts-mini-v1 on Malay TTS dataset
|
9 |
|
10 |
Source code at https://github.com/mesolitica/malaya-speech/tree/master/session/parler-tts
|
11 |
|
12 |
Wandb at https://wandb.ai/huseinzol05/parler-speech?nw=nwuserhuseinzol05
|
13 |
|
14 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
```python
|
17 |
import torch
|
@@ -40,10 +49,16 @@ prompt = 'Husein zolkepli sangat comel dan kacak suka makan cendol'
|
|
40 |
for s in speakers:
|
41 |
description = f"{s}'s voice, delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
42 |
|
43 |
-
input_ids = tokenizer(description, return_tensors="pt").
|
44 |
-
prompt_input_ids = tokenizer(prompt, return_tensors="pt").
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
47 |
audio_arr = generation.cpu()
|
48 |
sf.write(f'{s}.mp3', audio_arr.numpy().squeeze(), 44100)
|
49 |
```
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- mesolitica/tts-combine-annotated
|
5 |
+
language:
|
6 |
+
- ms
|
7 |
---
|
8 |
|
9 |
# Malay Parler TTS Mini V1
|
10 |
|
11 |
+
Finetuned https://huggingface.co/parler-tts/parler-tts-mini-v1 on [Malay TTS dataset](https://huggingface.co/datasets/mesolitica/tts-combine-annotated)
|
12 |
|
13 |
Source code at https://github.com/mesolitica/malaya-speech/tree/master/session/parler-tts
|
14 |
|
15 |
Wandb at https://wandb.ai/huseinzol05/parler-speech?nw=nwuserhuseinzol05
|
16 |
|
17 |
+
## requirements
|
18 |
+
|
19 |
+
```bash
|
20 |
+
pip3 install git+https://github.com/mesolitica/async-parler-tts
|
21 |
+
```
|
22 |
+
|
23 |
+
## how to
|
24 |
|
25 |
```python
|
26 |
import torch
|
|
|
49 |
for s in speakers:
|
50 |
description = f"{s}'s voice, delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
51 |
|
52 |
+
input_ids = tokenizer(description, return_tensors="pt").to(device)
|
53 |
+
prompt_input_ids = tokenizer(prompt, return_tensors="pt").to(device)
|
54 |
+
|
55 |
+
generation = model.generate(
|
56 |
+
input_ids=input_ids.input_ids,
|
57 |
+
attention_mask=input_ids.attention_mask,
|
58 |
+
prompt_input_ids=prompt_input_ids.input_ids,
|
59 |
+
prompt_attention_mask=prompt_input_ids.attention_mask,
|
60 |
+
)
|
61 |
|
|
|
62 |
audio_arr = generation.cpu()
|
63 |
sf.write(f'{s}.mp3', audio_arr.numpy().squeeze(), 44100)
|
64 |
```
|