--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - turkish_ner metrics: - f1 - precision - recall - accuracy model-index: - name: turkish-ner-mBERT-03 results: - task: name: Token Classification type: token-classification dataset: name: turkish_ner type: turkish_ner config: default split: train args: default metrics: - name: F1 type: f1 value: 0.9498768124722323 - name: Precision type: precision value: 0.9514138921477406 - name: Recall type: recall value: 0.9483446913181983 - name: Accuracy type: accuracy value: 0.9899531423087632 --- # turkish-ner-mBERT-03 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the turkish_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0340 - F1: 0.9499 - Precision: 0.9514 - Recall: 0.9483 - Accuracy: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.3699 | 1.0 | 625 | 0.2191 | 0.6830 | 0.6971 | 0.6693 | 0.9216 | | 0.2451 | 2.0 | 1250 | 0.1407 | 0.8042 | 0.8068 | 0.8017 | 0.9527 | | 0.1818 | 3.0 | 1875 | 0.0799 | 0.8785 | 0.8828 | 0.8742 | 0.9733 | | 0.0964 | 4.0 | 2500 | 0.0489 | 0.9295 | 0.9252 | 0.9339 | 0.9852 | | 0.0635 | 5.0 | 3125 | 0.0340 | 0.9499 | 0.9514 | 0.9483 | 0.9900 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0