pkumc commited on
Commit
8e8c28e
·
verified ·
1 Parent(s): ebeffaa

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ figures/benchmark.jpg filter=lfs diff=lfs merge=lfs -text
figures/benchmark.jpg ADDED

Git LFS Details

  • SHA256: 96fa3297b31b53a21a283886d9f6d5759433e7523bd63b09d5ac43e9422dae97
  • Pointer size: 131 Bytes
  • Size of remote file: 777 kB
inference/bf16_cast_block_int8.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from argparse import ArgumentParser
4
+ from glob import glob
5
+ from tqdm import tqdm
6
+
7
+ import torch
8
+ from safetensors.torch import load_file, save_file
9
+ from huggingface_hub import snapshot_download
10
+
11
+ from kernel import weight_quant
12
+
13
+ def main(bf16_path, int8_path, model_name="deepseek-ai/DeepSeek-R1"):
14
+ torch.set_default_dtype(torch.bfloat16)
15
+ os.makedirs(int8_path, exist_ok=True)
16
+ model_index_file = os.path.join(int8_path, "model.safetensors.index.json")
17
+
18
+ if not os.path.exists(model_index_file):
19
+ snapshot_download(
20
+ repo_id=model_name,
21
+ allow_patterns=["model.safetensors.index.json"],
22
+ local_dir=int8_path,
23
+ local_dir_use_symlinks=False
24
+ )
25
+ print(f"model index file downloaded to {model_index_file}")
26
+
27
+ with open(model_index_file, "r") as f:
28
+ model_index = json.load(f)
29
+ weight_map = model_index["weight_map"]
30
+ scale_count = len([key for key in weight_map.keys() if key.endswith("_scale_inv")])
31
+
32
+ safetensor_files = list(glob(os.path.join(bf16_path, "*.safetensors")))
33
+ safetensor_files.sort()
34
+ quant_count = 0
35
+ for safetensor_file in tqdm(safetensor_files):
36
+ file_name = os.path.basename(safetensor_file)
37
+ state_dict = load_file(safetensor_file, device="cuda")
38
+ new_state_dict = {}
39
+ for weight_name, weight in state_dict.items():
40
+ scale_inv_name = f"{weight_name}_scale_inv"
41
+ if scale_inv_name in weight_map:
42
+ assert weight.element_size() == 2
43
+ quant_count += 1
44
+ int8_weight, scale_inv = weight_quant(weight)
45
+ new_state_dict[weight_name] = int8_weight
46
+ new_state_dict[scale_inv_name] = scale_inv
47
+ else:
48
+ new_state_dict[weight_name] = weight
49
+ new_safetensor_file = os.path.join(int8_path, file_name)
50
+ save_file(new_state_dict, new_safetensor_file)
51
+ assert quant_count == scale_count
52
+ print(f"{quant_count} weights are quantized.")
53
+
54
+
55
+ if __name__ == "__main__":
56
+ parser = ArgumentParser()
57
+ parser.add_argument("--input-bf16-hf-path", type=str, required=True)
58
+ parser.add_argument("--output-int8-hf-path", type=str, required=True)
59
+ parser.add_argument("--model-name", type=str, default="deepseek-ai/DeepSeek-R1")
60
+ args = parser.parse_args()
61
+ main(args.input_bf16_hf_path, args.output_int8_hf_path, args.model_name)
62
+ print("done")
63
+
inference/kernel.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ import torch
4
+ import triton
5
+ import triton.language as tl
6
+ from triton import Config
7
+
8
+ @triton.jit
9
+ def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
10
+ pid = tl.program_id(axis=0)
11
+ offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
12
+ x = tl.load(x_ptr + offs).to(tl.float32)
13
+ s = tl.max(tl.abs(x)) / 448.
14
+ y = x / s
15
+ y = y.to(y_ptr.dtype.element_ty)
16
+ tl.store(y_ptr + offs, y)
17
+ tl.store(s_ptr + pid, s)
18
+
19
+
20
+ def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
21
+ assert x.is_contiguous()
22
+ assert x.size(-1) % block_size == 0
23
+ y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
24
+ s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
25
+ grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
26
+ act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
27
+ return y, s
28
+
29
+
30
+ @triton.jit
31
+ def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
32
+ pid_m = tl.program_id(axis=0)
33
+ pid_n = tl.program_id(axis=1)
34
+ n = tl.cdiv(N, BLOCK_SIZE)
35
+ offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
36
+ offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
37
+ offs = offs_m[:, None] * N + offs_n[None, :]
38
+ mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
39
+ x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
40
+ s = tl.load(s_ptr + pid_m * n + pid_n)
41
+ y = x * s
42
+ tl.store(y_ptr + offs, y, mask=mask)
43
+
44
+
45
+ def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
46
+ assert x.is_contiguous() and s.is_contiguous()
47
+ assert x.dim() == 2 and s.dim() == 2
48
+ M, N = x.size()
49
+ y = torch.empty_like(x, dtype=torch.get_default_dtype())
50
+ grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
51
+ weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
52
+ return y
53
+
54
+
55
+ @triton.jit
56
+ def weight_quant_kernel(x_ptr, y_ptr, s_ptr, M, N, BLOCK_SIZE: tl.constexpr):
57
+ pid_m = tl.program_id(axis=0)
58
+ pid_n = tl.program_id(axis=1)
59
+ n = tl.cdiv(N, BLOCK_SIZE)
60
+ offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
61
+ offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
62
+ offs = offs_m[:, None] * N + offs_n[None, :]
63
+ mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
64
+ x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
65
+ s = tl.max(tl.abs(x)) / 127.#int8
66
+ y = x / s
67
+ y = y.to(y_ptr.dtype.element_ty)
68
+ tl.store(y_ptr + offs, y, mask=mask)
69
+ tl.store(s_ptr + pid_m * n + pid_n, s)
70
+
71
+ # quant to block int8
72
+ def weight_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
73
+ assert x.is_contiguous()
74
+ assert x.dim() == 2
75
+ M, N = x.size()
76
+ y = torch.empty_like(x, dtype=torch.int8)
77
+ sM, sN = torch.tensor(1.0*M/block_size).ceil().int(), torch.tensor(1.0*N/block_size).ceil().int()
78
+ s = x.new_empty(sM, sN, dtype=torch.float32)
79
+ grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
80
+ weight_quant_kernel[grid](x, y, s, M, N, BLOCK_SIZE=block_size)
81
+ return y, s
82
+
83
+
84
+ fp8_gemm_configs = [
85
+ Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
86
+ for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
87
+ ]
88
+
89
+ @triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
90
+ @triton.jit
91
+ def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
92
+ a_s_ptr, b_s_ptr,
93
+ M, N: tl.constexpr, K: tl.constexpr,
94
+ BLOCK_SIZE_M: tl.constexpr,
95
+ BLOCK_SIZE_N: tl.constexpr,
96
+ BLOCK_SIZE_K: tl.constexpr):
97
+ pid_m = tl.program_id(axis=0)
98
+ pid_n = tl.program_id(axis=1)
99
+ k = tl.cdiv(K, BLOCK_SIZE_K)
100
+ offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
101
+ offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
102
+ offs_k = tl.arange(0, BLOCK_SIZE_K)
103
+ a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
104
+ b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
105
+ a_s_ptrs = a_s_ptr + offs_m * k
106
+ b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k
107
+
108
+ accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
109
+ for i in range(k):
110
+ a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
111
+ b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
112
+ a_s = tl.load(a_s_ptrs)
113
+ b_s = tl.load(b_s_ptrs)
114
+ accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
115
+ a_ptrs += BLOCK_SIZE_K
116
+ b_ptrs += BLOCK_SIZE_K
117
+ a_s_ptrs += 1
118
+ b_s_ptrs += 1
119
+ c = accumulator.to(c_ptr.dtype.element_ty)
120
+ offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
121
+ offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
122
+ c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
123
+ mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
124
+ tl.store(c_ptrs, c, mask=mask)
125
+
126
+
127
+ def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
128
+ assert a.is_contiguous() and b.is_contiguous()
129
+ assert a_s.is_contiguous() and b_s.is_contiguous()
130
+ K = a.size(-1)
131
+ M = a.numel() // K
132
+ N = b.size(0)
133
+ c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
134
+ grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
135
+ fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
136
+ return c