Text Generation
PEFT
Safetensors
conversational
hiroshi-matsuda-rit commited on
Commit
b08c48b
·
verified ·
1 Parent(s): 86cda19

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -48,7 +48,9 @@ However, please note the following important conditions regarding its usage:
48
 
49
  - Install
50
  ```Console
51
- pip install -U vllm==0.7.2 sudachipy sudachidict-core
 
 
52
  ```
53
 
54
  In this first release, we only provide code example using the [sudachipy](https://github.com/WorksApplications/SudachiPy) tokenizer, which matches the token boundaries of UD Japanese datasets.
@@ -143,7 +145,7 @@ for sentence, result in zip(input_sentences, results):
143
  print(result.outputs[0].text)
144
  ```
145
 
146
- - Output of code example
147
  ```
148
  # text = 銀座でランチをご一緒しましょう。
149
  - Task 1
@@ -288,8 +290,8 @@ The details of the experimental conditions will be released later.
288
 
289
  ### Evaluation Results
290
 
291
- The accuracies in the table below are based on the simple recovery process applied to the TSV output in Step 3.
292
- 次の表に記載した精度は、Step 3のTSV出力に簡易なリカバリ処理を適用した上で評価を行っています。
293
  | dataset | UPOS | UAS | LAS |
294
  | ---- | ---- | ---- | ---- |
295
  | [UD_English-EWT](https://github.com/UniversalDependencies/UD_English-EWT) | 0.982 | 0.951 | 0.937 |
 
48
 
49
  - Install
50
  ```Console
51
+ # for CUDA 12.1
52
+ pip install torch==2.5.1 --index-url https://download.pytorch.org/whl/cu121
53
+ pip install vllm==0.7.2 sudachipy sudachidict-core
54
  ```
55
 
56
  In this first release, we only provide code example using the [sudachipy](https://github.com/WorksApplications/SudachiPy) tokenizer, which matches the token boundaries of UD Japanese datasets.
 
145
  print(result.outputs[0].text)
146
  ```
147
 
148
+ - Outputs of Code example
149
  ```
150
  # text = 銀座でランチをご一緒しましょう。
151
  - Task 1
 
290
 
291
  ### Evaluation Results
292
 
293
+ The accuracies in the table below are based on the simple recovery process applied to the TSV output in Step 3, by using the gold tokens from the test set of the UD dataset for the seven languages ​​mentioned above.
294
+ 次の表に記載した精度は、前述の7言語のUDデータセットのtestセットの正解トークンを用いて、Step 3のTSV出力に簡易なリカバリ処理を適用した上で評価を行っています。
295
  | dataset | UPOS | UAS | LAS |
296
  | ---- | ---- | ---- | ---- |
297
  | [UD_English-EWT](https://github.com/UniversalDependencies/UD_English-EWT) | 0.982 | 0.951 | 0.937 |