Upload 2 files
Browse files
iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b67e032728959023a14b7a6a4831009367d58331cd2d188fa6540e7e40a05121
|
3 |
+
size 975633422
|
upernet_swin_small_patch4_window7_512x1024_80k.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
model = dict(
|
3 |
+
type='EncoderDecoder',
|
4 |
+
pretrained='pretrained/swin_small_patch4_window7_224.pth',
|
5 |
+
backbone=dict(
|
6 |
+
type='SwinTransformer',
|
7 |
+
embed_dim=96,
|
8 |
+
depths=[2, 2, 18, 2],
|
9 |
+
num_heads=[3, 6, 12, 24],
|
10 |
+
window_size=7,
|
11 |
+
mlp_ratio=4.0,
|
12 |
+
qkv_bias=True,
|
13 |
+
qk_scale=None,
|
14 |
+
drop_rate=0.0,
|
15 |
+
attn_drop_rate=0.0,
|
16 |
+
drop_path_rate=0.3,
|
17 |
+
ape=False,
|
18 |
+
patch_norm=True,
|
19 |
+
out_indices=(0, 1, 2, 3),
|
20 |
+
use_checkpoint=False),
|
21 |
+
decode_head=dict(
|
22 |
+
type='UPerHead',
|
23 |
+
in_channels=[96, 192, 384, 768],
|
24 |
+
in_index=[0, 1, 2, 3],
|
25 |
+
pool_scales=(1, 2, 3, 6),
|
26 |
+
channels=512,
|
27 |
+
dropout_ratio=0.1,
|
28 |
+
num_classes=104,
|
29 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
30 |
+
align_corners=False,
|
31 |
+
loss_decode=dict(
|
32 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
33 |
+
auxiliary_head=dict(
|
34 |
+
type='FCNHead',
|
35 |
+
in_channels=384,
|
36 |
+
in_index=2,
|
37 |
+
channels=256,
|
38 |
+
num_convs=1,
|
39 |
+
concat_input=False,
|
40 |
+
dropout_ratio=0.1,
|
41 |
+
num_classes=104,
|
42 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
43 |
+
align_corners=False,
|
44 |
+
loss_decode=dict(
|
45 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
46 |
+
train_cfg=dict(),
|
47 |
+
test_cfg=dict(mode='whole'))
|
48 |
+
dataset_type = 'CustomDataset'
|
49 |
+
data_root = './data/FoodSeg103/Images/'
|
50 |
+
img_norm_cfg = dict(
|
51 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
52 |
+
crop_size = (512, 1024)
|
53 |
+
train_pipeline = [
|
54 |
+
dict(type='LoadImageFromFile'),
|
55 |
+
dict(type='LoadAnnotations'),
|
56 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
57 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
58 |
+
dict(type='RandomFlip', prob=0.5),
|
59 |
+
dict(type='PhotoMetricDistortion'),
|
60 |
+
dict(
|
61 |
+
type='Normalize',
|
62 |
+
mean=[123.675, 116.28, 103.53],
|
63 |
+
std=[58.395, 57.12, 57.375],
|
64 |
+
to_rgb=True),
|
65 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=255),
|
66 |
+
dict(type='DefaultFormatBundle'),
|
67 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
68 |
+
]
|
69 |
+
test_pipeline = [
|
70 |
+
dict(type='LoadImageFromFile'),
|
71 |
+
dict(
|
72 |
+
type='MultiScaleFlipAug',
|
73 |
+
img_scale=(2048, 1024),
|
74 |
+
flip=False,
|
75 |
+
transforms=[
|
76 |
+
dict(type='Resize', keep_ratio=True),
|
77 |
+
dict(type='RandomFlip'),
|
78 |
+
dict(
|
79 |
+
type='Normalize',
|
80 |
+
mean=[123.675, 116.28, 103.53],
|
81 |
+
std=[58.395, 57.12, 57.375],
|
82 |
+
to_rgb=True),
|
83 |
+
dict(type='ImageToTensor', keys=['img']),
|
84 |
+
dict(type='Collect', keys=['img'])
|
85 |
+
])
|
86 |
+
]
|
87 |
+
data = dict(
|
88 |
+
samples_per_gpu=2,
|
89 |
+
workers_per_gpu=2,
|
90 |
+
train=dict(
|
91 |
+
type='CustomDataset',
|
92 |
+
data_root='./data/FoodSeg103/Images/',
|
93 |
+
img_dir='img_dir/train',
|
94 |
+
ann_dir='ann_dir/train',
|
95 |
+
pipeline=[
|
96 |
+
dict(type='LoadImageFromFile'),
|
97 |
+
dict(type='LoadAnnotations'),
|
98 |
+
dict(
|
99 |
+
type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
100 |
+
dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
|
101 |
+
dict(type='RandomFlip', prob=0.5),
|
102 |
+
dict(type='PhotoMetricDistortion'),
|
103 |
+
dict(
|
104 |
+
type='Normalize',
|
105 |
+
mean=[123.675, 116.28, 103.53],
|
106 |
+
std=[58.395, 57.12, 57.375],
|
107 |
+
to_rgb=True),
|
108 |
+
dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=255),
|
109 |
+
dict(type='DefaultFormatBundle'),
|
110 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
111 |
+
]),
|
112 |
+
val=dict(
|
113 |
+
type='CustomDataset',
|
114 |
+
data_root='./data/FoodSeg103/Images/',
|
115 |
+
img_dir='img_dir/test',
|
116 |
+
ann_dir='ann_dir/test',
|
117 |
+
pipeline=[
|
118 |
+
dict(type='LoadImageFromFile'),
|
119 |
+
dict(
|
120 |
+
type='MultiScaleFlipAug',
|
121 |
+
img_scale=(2048, 1024),
|
122 |
+
flip=False,
|
123 |
+
transforms=[
|
124 |
+
dict(type='Resize', keep_ratio=True),
|
125 |
+
dict(type='RandomFlip'),
|
126 |
+
dict(
|
127 |
+
type='Normalize',
|
128 |
+
mean=[123.675, 116.28, 103.53],
|
129 |
+
std=[58.395, 57.12, 57.375],
|
130 |
+
to_rgb=True),
|
131 |
+
dict(type='ImageToTensor', keys=['img']),
|
132 |
+
dict(type='Collect', keys=['img'])
|
133 |
+
])
|
134 |
+
]),
|
135 |
+
test=dict(
|
136 |
+
type='CustomDataset',
|
137 |
+
data_root='./data/FoodSeg103/Images/',
|
138 |
+
img_dir='img_dir/test',
|
139 |
+
ann_dir='ann_dir/test',
|
140 |
+
pipeline=[
|
141 |
+
dict(type='LoadImageFromFile'),
|
142 |
+
dict(
|
143 |
+
type='MultiScaleFlipAug',
|
144 |
+
img_scale=(2048, 1024),
|
145 |
+
flip=False,
|
146 |
+
transforms=[
|
147 |
+
dict(type='Resize', keep_ratio=True),
|
148 |
+
dict(type='RandomFlip'),
|
149 |
+
dict(
|
150 |
+
type='Normalize',
|
151 |
+
mean=[123.675, 116.28, 103.53],
|
152 |
+
std=[58.395, 57.12, 57.375],
|
153 |
+
to_rgb=True),
|
154 |
+
dict(type='ImageToTensor', keys=['img']),
|
155 |
+
dict(type='Collect', keys=['img'])
|
156 |
+
])
|
157 |
+
]))
|
158 |
+
log_config = dict(
|
159 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
160 |
+
dist_params = dict(backend='nccl')
|
161 |
+
log_level = 'INFO'
|
162 |
+
load_from = None
|
163 |
+
resume_from = None
|
164 |
+
workflow = [('train', 1)]
|
165 |
+
cudnn_benchmark = True
|
166 |
+
optimizer = dict(
|
167 |
+
type='AdamW',
|
168 |
+
lr=6e-05,
|
169 |
+
betas=(0.9, 0.999),
|
170 |
+
weight_decay=0.01,
|
171 |
+
paramwise_cfg=dict(
|
172 |
+
custom_keys=dict(
|
173 |
+
absolute_pos_embed=dict(decay_mult=0.0),
|
174 |
+
relative_position_bias_table=dict(decay_mult=0.0),
|
175 |
+
norm=dict(decay_mult=0.0))))
|
176 |
+
optimizer_config = dict()
|
177 |
+
lr_config = dict(
|
178 |
+
policy='poly',
|
179 |
+
warmup='linear',
|
180 |
+
warmup_iters=1500,
|
181 |
+
warmup_ratio=1e-06,
|
182 |
+
power=1.0,
|
183 |
+
min_lr=0.0,
|
184 |
+
by_epoch=False)
|
185 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
186 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
187 |
+
evaluation = dict(interval=8000, metric='mIoU')
|
188 |
+
work_dir = './work_dirs/upernet_swin_small_patch4_window7_512x1024_80k'
|
189 |
+
gpu_ids = range(0, 1)
|