--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-philosophy-adapted results: [] datasets: - AiresPucrs/stanford-encyclopedia-philosophy language: - en pipeline_tag: fill-mask --- # bert-philosophy-adapted This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [Standford Encylcopedia of Philosophy](https://huggingface.co/datasets/AiresPucrs/stanford-encyclopedia-philosophy) dataset, using masked language modeling. It achieves the following results on the evaluation set: - Loss: 1.5044 ## Model description This model was trained with the intention of creating a BERT encoder model for philosophical terminology, and further training on downstream tasks such as school of philosophy text classification. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.0568 | 0.1020 | 500 | 1.8821 | | 1.9169 | 0.2039 | 1000 | 1.7939 | | 1.873 | 0.3059 | 1500 | 1.7593 | | 1.8408 | 0.4078 | 2000 | 1.7280 | | 1.8461 | 0.5098 | 2500 | 1.7069 | | 1.8108 | 0.6117 | 3000 | 1.6899 | | 1.7959 | 0.7137 | 3500 | 1.6748 | | 1.7771 | 0.8157 | 4000 | 1.6490 | | 1.7705 | 0.9176 | 4500 | 1.6371 | | 1.725 | 1.0196 | 5000 | 1.6317 | | 1.707 | 1.1215 | 5500 | 1.6279 | | 1.7127 | 1.2235 | 6000 | 1.6100 | | 1.6806 | 1.3254 | 6500 | 1.5978 | | 1.6809 | 1.4274 | 7000 | 1.5920 | | 1.6766 | 1.5294 | 7500 | 1.5831 | | 1.6598 | 1.6313 | 8000 | 1.5748 | | 1.6632 | 1.7333 | 8500 | 1.5646 | | 1.6433 | 1.8352 | 9000 | 1.5554 | | 1.6317 | 1.9372 | 9500 | 1.5552 | | 1.6141 | 2.0392 | 10000 | 1.5404 | | 1.6328 | 2.1411 | 10500 | 1.5393 | | 1.5981 | 2.2431 | 11000 | 1.5330 | | 1.6192 | 2.3450 | 11500 | 1.5260 | | 1.6051 | 2.4470 | 12000 | 1.5198 | | 1.6218 | 2.5489 | 12500 | 1.5162 | | 1.5721 | 2.6509 | 13000 | 1.5079 | | 1.5656 | 2.7529 | 13500 | 1.5109 | | 1.5642 | 2.8548 | 14000 | 1.5077 | | 1.5715 | 2.9568 | 14500 | 1.5106 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1