--- license: apache-2.0 base_model: facebook/dinov2-base-imagenet1k-1-layer tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: dinov2-base-imagenet1k-1-layer-finetuned-galaxy_mnist results: [] --- # dinov2-base-imagenet1k-1-layer-finetuned-galaxy_mnist This model is a fine-tuned version of [facebook/dinov2-base-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-base-imagenet1k-1-layer) on the matthieulel/galaxy_mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.2800 - Accuracy: 0.93 - Precision: 0.9301 - Recall: 0.93 - F1: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4569 | 0.99 | 31 | 0.4350 | 0.8145 | 0.8694 | 0.8145 | 0.8062 | | 0.4173 | 1.98 | 62 | 0.3161 | 0.871 | 0.8848 | 0.871 | 0.8682 | | 0.4318 | 2.98 | 93 | 0.3914 | 0.8285 | 0.8801 | 0.8285 | 0.8216 | | 0.4238 | 4.0 | 125 | 0.3689 | 0.8485 | 0.8684 | 0.8485 | 0.8441 | | 0.3735 | 4.99 | 156 | 0.2969 | 0.8735 | 0.8929 | 0.8735 | 0.8705 | | 0.3371 | 5.98 | 187 | 0.2174 | 0.906 | 0.9136 | 0.906 | 0.9063 | | 0.3069 | 6.98 | 218 | 0.2422 | 0.9055 | 0.9077 | 0.9055 | 0.9049 | | 0.2526 | 8.0 | 250 | 0.2783 | 0.8905 | 0.9072 | 0.8905 | 0.8899 | | 0.2753 | 8.99 | 281 | 0.2373 | 0.9155 | 0.9176 | 0.9155 | 0.9150 | | 0.2704 | 9.98 | 312 | 0.2804 | 0.8865 | 0.9001 | 0.8865 | 0.8864 | | 0.2417 | 10.98 | 343 | 0.2078 | 0.912 | 0.9126 | 0.912 | 0.9122 | | 0.266 | 12.0 | 375 | 0.2004 | 0.918 | 0.9188 | 0.918 | 0.9183 | | 0.2387 | 12.99 | 406 | 0.2255 | 0.9165 | 0.9196 | 0.9165 | 0.9160 | | 0.2137 | 13.98 | 437 | 0.2208 | 0.9145 | 0.9169 | 0.9145 | 0.9147 | | 0.2063 | 14.98 | 468 | 0.2078 | 0.9205 | 0.9210 | 0.9205 | 0.9204 | | 0.2081 | 16.0 | 500 | 0.2658 | 0.9045 | 0.9115 | 0.9045 | 0.9037 | | 0.1862 | 16.99 | 531 | 0.2425 | 0.914 | 0.9208 | 0.914 | 0.9143 | | 0.1905 | 17.98 | 562 | 0.2398 | 0.912 | 0.9114 | 0.912 | 0.9116 | | 0.1727 | 18.98 | 593 | 0.2999 | 0.9085 | 0.9100 | 0.9085 | 0.9084 | | 0.1697 | 20.0 | 625 | 0.2520 | 0.9185 | 0.9197 | 0.9185 | 0.9183 | | 0.161 | 20.99 | 656 | 0.2471 | 0.9205 | 0.9216 | 0.9205 | 0.9205 | | 0.1363 | 21.98 | 687 | 0.2449 | 0.922 | 0.9224 | 0.922 | 0.9222 | | 0.1533 | 22.98 | 718 | 0.2780 | 0.917 | 0.9179 | 0.917 | 0.9173 | | 0.1324 | 24.0 | 750 | 0.2683 | 0.917 | 0.9184 | 0.917 | 0.9170 | | 0.1291 | 24.99 | 781 | 0.2651 | 0.924 | 0.9243 | 0.924 | 0.9240 | | 0.1112 | 25.98 | 812 | 0.3036 | 0.924 | 0.9245 | 0.924 | 0.9240 | | 0.1175 | 26.98 | 843 | 0.2818 | 0.927 | 0.9270 | 0.927 | 0.9269 | | 0.1214 | 28.0 | 875 | 0.2800 | 0.93 | 0.9301 | 0.93 | 0.9300 | | 0.0953 | 28.99 | 906 | 0.3168 | 0.9245 | 0.9244 | 0.9245 | 0.9244 | | 0.0955 | 29.76 | 930 | 0.3216 | 0.925 | 0.9249 | 0.925 | 0.9249 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1