martin-mwiti commited on
Commit
e79900b
·
verified ·
1 Parent(s): 4bf9756

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -134
README.md CHANGED
@@ -6,199 +6,157 @@ tags:
6
  - asr
7
  - peft
8
  - lora
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
- ### Model Sources [optional]
34
 
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
  ## Uses
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
  ### Direct Use
46
 
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
 
51
- ### Downstream Use [optional]
52
 
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
 
57
  ### Out-of-Scope Use
58
 
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
 
63
  ## Bias, Risks, and Limitations
64
 
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
 
69
  ### Recommendations
70
 
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
 
75
  ## How to Get Started with the Model
76
 
77
- Use the code below to get started with the model.
 
 
78
 
79
- [More Information Needed]
 
80
 
81
- ## Training Details
 
82
 
83
- ### Training Data
 
 
84
 
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
86
 
87
- [More Information Needed]
 
88
 
89
- ### Training Procedure
90
 
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
 
 
97
 
98
- #### Training Hyperparameters
99
 
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
101
 
102
- #### Speeds, Sizes, Times [optional]
103
 
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
 
106
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  ## Evaluation
109
 
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
 
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
 
132
  ### Results
133
 
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
 
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
 
146
  ## Environmental Impact
147
 
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
 
166
- [More Information Needed]
167
 
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
 
180
  **BibTeX:**
 
 
 
 
 
 
 
 
181
 
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
 
200
- [More Information Needed]
201
 
202
  ## Model Card Contact
203
 
204
- [More Information Needed]
 
6
  - asr
7
  - peft
8
  - lora
9
+ license: apache-2.0
10
+ datasets:
11
+ - mozilla-foundation/common_voice_13_0
12
+ language:
13
+ - hi
14
+ metrics:
15
+ - wer
16
+ base_model:
17
+ - openai/whisper-small
18
+ pipeline_tag: automatic-speech-recognition
19
  ---
20
 
21
+ # Whisper Small - Hindi Automatic Speech Recognition Model
 
 
 
 
22
 
23
  ## Model Details
24
 
25
  ### Model Description
26
 
27
+ This is a fine-tuned Whisper Small model for Automatic Speech Recognition (ASR) in Hindi, developed using Parameter-Efficient Fine-Tuning (PEFT) with Low-Rank Adaptation (LoRA). The model is designed to transcribe Hindi speech with improved accuracy and efficiency.
 
 
28
 
29
+ - **Developed by:** martin-mwiti
30
+ - **Model type:** Automatic Speech Recognition (ASR)
31
+ - **Language(s):** Hindi
32
+ - **License:** Apache-2.0
33
+ - **Finetuned from model:** openai/whisper-small
 
 
34
 
35
+ ### Model Sources
36
 
37
+ - **Repository:** [GitHub/martin-mwiti/AI-Model-Hub/ASR](https://github.com/MartinMwiti/AI-Model-Hub/ASR)
38
+ - **HuggingFace Hub:** [martin-mwiti/whisper-small-hi-lora-r32-alpha64-20241231](https://huggingface.co/martin-mwiti/whisper-small-hi-lora-r32-alpha64-20241231)
 
 
 
39
 
40
  ## Uses
41
 
 
 
42
  ### Direct Use
43
 
44
+ This model can be used for transcribing Hindi speech audio files. It is optimized for automatic speech recognition tasks using the Whisper Small model as a base.
 
 
45
 
46
+ ### Downstream Use
47
 
48
+ The model can be further fine-tuned or used as a starting point for other Hindi speech recognition applications.
 
 
49
 
50
  ### Out-of-Scope Use
51
 
52
+ - Do not use for languages other than Hindi
53
+ - Not suitable for real-time streaming audio transcription
54
+ - Avoid using in high-stakes or safety-critical applications without additional validation
55
 
56
  ## Bias, Risks, and Limitations
57
 
58
+ - Performance may vary depending on audio quality, accent, and background noise
59
+ - Trained on Common Voice dataset, which may not represent all Hindi dialects and speaking styles
60
+ - May have biases present in the training data
61
 
62
  ### Recommendations
63
 
64
+ - Validate model performance on your specific use case
65
+ - Use in conjunction with human review for critical applications
66
+ - Be aware of potential cultural or linguistic biases
67
 
68
  ## How to Get Started with the Model
69
 
70
+ ```python
71
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
72
+ from peft import PeftModel, PeftConfig
73
 
74
+ # Load the processor from the base model
75
+ processor = WhisperProcessor.from_pretrained("openai/whisper-small")
76
 
77
+ # Load the base Whisper model
78
+ base_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
79
 
80
+ # Load the adapter configuration and model
81
+ adapter_config = PeftConfig.from_pretrained("martin-mwiti/whisper-small-hi-lora-r32-alpha64-20241231")
82
+ model = PeftModel.from_pretrained(base_model, adapter_config)
83
 
84
+ # Use the model for inference
85
+ audio_array = ... # Replace with your audio array
86
+ inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt")
87
+ predicted_ids = model.generate(inputs.input_features)
88
 
89
+ # Decode the transcription
90
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
91
 
92
+ print("Transcription:", transcription)
93
 
94
+ ```
 
 
 
 
95
 
96
+ ## Training Details
97
 
98
+ ### Training Data
99
 
100
+ - **Dataset:** Common Voice 13.0
101
+ - **Language:** Hindi
102
+ - **Splits:** Trained on combined train and validation sets, tested on test set
103
 
104
+ ### Training Procedure
105
 
106
+ #### Training Hyperparameters
107
 
108
+ - **Base Model:** openai/whisper-small
109
+ - **Fine-Tuning Method:** PEFT with LoRA
110
+ - **LoRA Configuration:**
111
+ - Rank (r): 32
112
+ - Alpha: 64
113
+ - Target Modules: query and value projection matrices
114
+ - Dropout: 5%
115
+ - **Training Regime:** Mixed precision (fp16)
116
+ - **Batch Size:** 8 per device
117
+ - **Learning Rate:** 1e-3
118
+ - **Warmup Steps:** 25
119
+ - **Total Training Steps:** 50
120
 
121
  ## Evaluation
122
 
123
+ ### Metrics
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
+ - **Primary Metric:** Word Error Rate (WER)
 
 
 
 
 
 
126
 
127
  ### Results
128
 
129
+ | Metric | Value |
130
+ |---------------|---------|
131
+ | **Average WER** | 0.6938 |
132
+ | **Best WER** | 0.0000 |
133
+ | **Worst WER** | 1.6000 |
 
 
134
 
135
+ - **Evaluation Dataset:** Common Voice 13.0 Hindi Test Set
136
+ - **Number of Evaluation Samples:** 50
 
137
 
138
  ## Environmental Impact
139
 
140
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
+ ## Citation
143
 
144
+ If you use this model, please cite the original Whisper paper and acknowledge the fine-tuning work.
 
 
 
 
 
 
 
 
 
 
145
 
146
  **BibTeX:**
147
+ ```bibtex
148
+ @misc{whisper2022,
149
+ title={Robust Speech Recognition via Large-Scale Weak Supervision},
150
+ author={Radford, Alec and Kim, Jong Wook and Xu, Tao and et al.},
151
+ publisher={arXiv},
152
+ year={2022}
153
+ }
154
+ ```
155
 
156
+ ## Model Card Authors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
+ - martin-mwiti
159
 
160
  ## Model Card Contact
161
 
162
+ For questions or feedback, please open an issue on the GitHub repository or contact the model author.