File size: 2,606 Bytes
fc0165b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-tira-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-tira-colab

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2681
- Wer: 0.2787

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.2937        | 1.45  | 400  | 1.0460          | 0.9297 |
| 0.9157        | 2.9   | 800  | 0.5732          | 0.6728 |
| 0.6258        | 4.35  | 1200 | 0.4319          | 0.5434 |
| 0.5114        | 5.8   | 1600 | 0.3822          | 0.5465 |
| 0.4059        | 7.25  | 2000 | 0.3439          | 0.4700 |
| 0.3407        | 8.7   | 2400 | 0.2997          | 0.4778 |
| 0.2938        | 10.14 | 2800 | 0.2956          | 0.4121 |
| 0.2465        | 11.59 | 3200 | 0.2834          | 0.3537 |
| 0.2148        | 13.04 | 3600 | 0.2662          | 0.3779 |
| 0.1711        | 14.49 | 4000 | 0.2724          | 0.3160 |
| 0.1621        | 15.94 | 4400 | 0.2452          | 0.3571 |
| 0.1301        | 17.39 | 4800 | 0.2638          | 0.2927 |
| 0.1119        | 18.84 | 5200 | 0.2724          | 0.2765 |
| 0.1026        | 20.29 | 5600 | 0.2703          | 0.2986 |
| 0.0906        | 21.74 | 6000 | 0.2642          | 0.2638 |
| 0.0785        | 23.19 | 6400 | 0.2653          | 0.2709 |
| 0.0648        | 24.64 | 6800 | 0.2644          | 0.2669 |
| 0.0578        | 26.09 | 7200 | 0.2712          | 0.3123 |
| 0.0514        | 27.54 | 7600 | 0.2703          | 0.2672 |
| 0.0459        | 28.99 | 8000 | 0.2681          | 0.2787 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3