marinone94 commited on
Commit
ada7ca7
1 Parent(s): fdf77d5

eval model on test sv

Browse files
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ *venv/
2
+ runs/
3
+ creds.txt
4
+ wandb/
5
+ dlc/
6
+ tests/
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=1.7
2
+ torchaudio==0.13.1
3
+ git+https://github.com/huggingface/transformers
4
+ git+https://github.com/huggingface/datasets
5
+ librosa
6
+ jiwer
7
+ evaluate>=0.3.0
8
+ more-itertools
9
+ tensorboard
10
+ wandb
requirements_mac.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=1.7
2
+ torchaudio==0.11.0
3
+ git+https://github.com/huggingface/transformers
4
+ git+https://github.com/huggingface/datasets
5
+ librosa
6
+ jiwer
7
+ evaluate>=0.3.0
8
+ more-itertools
9
+ tensorboard
10
+ wandb
run.sh ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python $1run_speech_recognition_seq2seq_streaming.py \
2
+ --model_name_or_path="openai/whisper-medium" \
3
+ --dataset_train_name="mozilla-foundation/common_voice_11_0,mozilla-foundation/common_voice_11_0,mozilla-foundation/common_voice_11_0,babelbox/babelbox_voice,NbAiLab/NST,NbAiLab/NPSC,google/fleurs,google/fleurs,google/fleurs" \
4
+ --dataset_train_config_name="sv-SE,da,nn-NO,nst,no-distant,16K_mp3_nynorsk,sv_se,da_dk,nb_no" \
5
+ --language_train="sv,da,no,sv,no,no,sv,da,no" \
6
+ --train_split_name="train+validation,train+validation,train+validation,train,train+test,train+validation,train+validation,train+validation,train+validation" \
7
+ --dataset_eval_name="mozilla-foundation/common_voice_11_0" \
8
+ --dataset_eval_config_name="sv-SE" \
9
+ --language_eval="sv" \
10
+ --eval_split_name="test" \
11
+ --model_index_name="Whisper Medium Nordic" \
12
+ --num_train_epochs="1" \
13
+ --output_dir="./" \
14
+ --per_device_train_batch_size="32" \
15
+ --per_device_eval_batch_size="16" \
16
+ --logging_steps="25" \
17
+ --learning_rate="1e-5" \
18
+ --warmup_steps="500" \
19
+ --evaluation_strategy="steps" \
20
+ --eval_steps="1000" \
21
+ --save_strategy="steps" \
22
+ --save_steps="1000" \
23
+ --generation_max_length="225" \
24
+ --length_column_name="input_length" \
25
+ --max_duration_in_seconds="30" \
26
+ --text_column_name="sentence,text,raw_transcription" \
27
+ --freeze_feature_encoder="False" \
28
+ --report_to="wandb" \
29
+ --save_total_limit="3" \
30
+ --metric_for_best_model="wer" \
31
+ --greater_is_better="False" \
32
+ --load_best_model_at_end \
33
+ --gradient_checkpointing \
34
+ --overwrite_output_dir \
35
+ --do_eval \
36
+ --fp16 \
37
+ --predict_with_generate \
38
+ --do_normalize_eval \
39
+ --streaming \
40
+ --use_auth_token
run_speech_recognition_seq2seq_streaming.py ADDED
@@ -0,0 +1,933 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence speech recognition
18
+ with 🤗 Datasets' streaming mode.
19
+ """
20
+ # You can also adapt this script for your own sequence to sequence speech
21
+ # recognition task. Pointers for this are left as comments.
22
+
23
+ import json
24
+ import logging
25
+ import os
26
+ import subprocess
27
+ import sys
28
+ from dataclasses import dataclass, field
29
+ from typing import Any, Dict, List, Optional, Union
30
+
31
+ import datasets
32
+ import torch
33
+ import wandb
34
+ from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
35
+ from torch.utils.data import IterableDataset
36
+
37
+ import evaluate
38
+ import transformers
39
+ from transformers import (
40
+ AutoConfig,
41
+ AutoFeatureExtractor,
42
+ AutoModelForSpeechSeq2Seq,
43
+ AutoProcessor,
44
+ AutoTokenizer,
45
+ HfArgumentParser,
46
+ Seq2SeqTrainer,
47
+ Seq2SeqTrainingArguments,
48
+ TrainerCallback,
49
+ set_seed,
50
+ )
51
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
52
+ from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE, LANGUAGES
53
+ from transformers.trainer_pt_utils import IterableDatasetShard
54
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
55
+ from transformers.utils import check_min_version, send_example_telemetry
56
+ from transformers.utils.versions import require_version
57
+
58
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
59
+ check_min_version("4.25.0.dev0")
60
+
61
+ require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
62
+
63
+ logger = logging.getLogger(__name__)
64
+
65
+ SENDING_NOTIFICATION = "*** Sending notification to email ***"
66
+ RECIPIENT_ADDRESS = "[email protected]"
67
+
68
+ wandb_token = os.environ.get("WANDB_TOKEN", "None")
69
+ hf_token = os.environ.get("HF_TOKEN", None)
70
+ if (hf_token is None or wandb_token == "None") and os.path.exists("./creds.txt"):
71
+ with open("./creds.txt", "r") as f:
72
+ lines = f.readlines()
73
+ for line in lines:
74
+ key, value = line.split("=")
75
+ if key == "HF_TOKEN":
76
+ hf_token = value.strip()
77
+ if key == "WANDB_TOKEN":
78
+ wandb_token = value.strip()
79
+ if key == "EMAIL_ADDRESS":
80
+ os.environ["EMAIL_ADDRESS"] = value.strip()
81
+ if key == "EMAIL_PASSWORD":
82
+ os.environ["EMAIL_PASSWORD"] = value.strip()
83
+
84
+ if hf_token is not None:
85
+ try:
86
+ os.makedirs("/root/.huggingface", exist_ok=True)
87
+ with open("/root/.huggingface/token", "w") as f:
88
+ f.write(hf_token)
89
+ logger.info("Huggingface API key set")
90
+ except (PermissionError, OSError):
91
+ logger.warning("Huggingface API key not set, relying on ~/.huggingface/token")
92
+ else:
93
+ logger.warning("Huggingface API key not set, relying on ~/.huggingface/token")
94
+
95
+ wandb.login(key=wandb_token, relogin=True, timeout=5)
96
+ wandb.init(project="whisper", entity="pn-aa")
97
+
98
+ logger.info("Wandb API key set, logging to wandb")
99
+
100
+
101
+ @dataclass
102
+ class ModelArguments:
103
+ """
104
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
105
+ """
106
+
107
+ model_name_or_path: str = field(
108
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
109
+ )
110
+ config_name: Optional[str] = field(
111
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
112
+ )
113
+ tokenizer_name: Optional[str] = field(
114
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
115
+ )
116
+ feature_extractor_name: Optional[str] = field(
117
+ default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
118
+ )
119
+ cache_dir: Optional[str] = field(
120
+ default=None,
121
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
122
+ )
123
+ use_fast_tokenizer: bool = field(
124
+ default=True,
125
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
126
+ )
127
+ model_revision: str = field(
128
+ default="main",
129
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
130
+ )
131
+ use_auth_token: bool = field(
132
+ default=False,
133
+ metadata={
134
+ "help": (
135
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
136
+ "with private models)."
137
+ )
138
+ },
139
+ )
140
+ freeze_feature_encoder: bool = field(
141
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
142
+ )
143
+ freeze_encoder: bool = field(
144
+ default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
145
+ )
146
+ forced_decoder_ids: List[List[int]] = field(
147
+ default=None,
148
+ metadata={
149
+ "help": (
150
+ "A list of pairs of integers which indicates a mapping from generation indices to token indices "
151
+ "that will be forced before sampling. For example, [[0, 123]] means the first generated token "
152
+ "will always be a token of index 123."
153
+ )
154
+ },
155
+ )
156
+ suppress_tokens: List[int] = field(
157
+ default=None, metadata={"help": "A list of tokens that will be suppressed at generation."}
158
+ )
159
+ model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."})
160
+
161
+
162
+ @dataclass
163
+ class DataTrainingArguments:
164
+ """
165
+ Arguments pertaining to what data we are going to input our model for training and eval.
166
+ """
167
+
168
+ dataset_train_name: str = field(
169
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
170
+ )
171
+ dataset_train_config_name: Optional[str] = field(
172
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
173
+ )
174
+ dataset_eval_name: str = field(
175
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
176
+ )
177
+ dataset_eval_config_name: Optional[str] = field(
178
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
179
+ )
180
+ text_column: Optional[str] = field(
181
+ default=None,
182
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
183
+ )
184
+ max_train_samples: Optional[int] = field(
185
+ default=None,
186
+ metadata={
187
+ "help": (
188
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
189
+ "value if set."
190
+ )
191
+ },
192
+ )
193
+ max_eval_samples: Optional[int] = field(
194
+ default=None,
195
+ metadata={
196
+ "help": (
197
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
198
+ "value if set."
199
+ )
200
+ },
201
+ )
202
+ audio_column_name: str = field(
203
+ default="audio",
204
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
205
+ )
206
+ text_column_name: str = field(
207
+ default="text",
208
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
209
+ )
210
+ max_duration_in_seconds: float = field(
211
+ default=20.0,
212
+ metadata={
213
+ "help": (
214
+ "Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
215
+ " 'max_duration_in_seconds`"
216
+ )
217
+ },
218
+ )
219
+ min_duration_in_seconds: float = field(
220
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
221
+ )
222
+ train_split_name: str = field(
223
+ default="train",
224
+ metadata={
225
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
226
+ },
227
+ )
228
+ eval_split_name: str = field(
229
+ default="test",
230
+ metadata={
231
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
232
+ },
233
+ )
234
+ do_lower_case: bool = field(
235
+ default=False,
236
+ metadata={"help": "Whether the target text should be lower cased."},
237
+ )
238
+ do_remove_punctuation: bool = field(
239
+ default=False,
240
+ metadata={"help": "Whether the target text should be striped of punctuation."},
241
+ )
242
+ do_normalize_eval: bool = field(
243
+ default=True,
244
+ metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."},
245
+ )
246
+ language_train: str = field(
247
+ default=None,
248
+ metadata={
249
+ "help": (
250
+ "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
251
+ "only. For English speech recognition, it should be set to `None`."
252
+ )
253
+ },
254
+ )
255
+ language_eval: str = field(
256
+ default=None,
257
+ metadata={
258
+ "help": (
259
+ "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
260
+ "only. For English speech recognition, it should be set to `None`."
261
+ )
262
+ },
263
+ )
264
+ task: str = field(
265
+ default="transcribe",
266
+ metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
267
+ )
268
+ shuffle_buffer_size: Optional[int] = field(
269
+ default=500,
270
+ metadata={
271
+ "help": (
272
+ "The number of streamed examples to download before shuffling them. The large the buffer, "
273
+ "the closer it is to real offline shuffling."
274
+ )
275
+ },
276
+ )
277
+ streaming: bool = field(
278
+ default=True,
279
+ metadata={"help": "Whether to use streaming mode to load and pre-process the data."},
280
+ )
281
+
282
+
283
+ @dataclass
284
+ class DataCollatorSpeechSeq2SeqWithPadding:
285
+ """
286
+ Data collator that will dynamically pad the inputs received.
287
+ Args:
288
+ processor ([`WhisperProcessor`])
289
+ The processor used for processing the data.
290
+ decoder_start_token_id (`int`)
291
+ The begin-of-sentence of the decoder.
292
+ """
293
+
294
+ processor: Any
295
+ decoder_start_token_id: int
296
+ task_id: int
297
+ # TODO: remove - infer language from dataset
298
+ language_id: int = -100
299
+
300
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
301
+ # split inputs and labels since they have to be of different lengths and need
302
+ # different padding methods
303
+ model_input_name = self.processor.model_input_names[0]
304
+ input_features = [{model_input_name: feature[model_input_name]} for feature in features]
305
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
306
+ # lang_features = [f"<|{TO_LANGUAGE_CODE[feature['language']]}|>" for feature in features]
307
+
308
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
309
+
310
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
311
+
312
+ # replace padding with -100 to ignore loss correctly
313
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
314
+
315
+ # if bos token is appended in previous tokenization step,
316
+ # cut bos token here as it's append later anyways
317
+
318
+ # lang_token_ids = self.processor.tokenizer(lang_features).input_ids
319
+ # # Replace language and task if they are in the beginning, otherwise add them
320
+ # if (labels[:, 1] == self.task_id).all().cpu().item():
321
+ # labels[:, 0] = lang_token_ids
322
+ # labels[:, 1] = torch.full_like(labels[:, 1], self.task_id)
323
+ # else:
324
+ # # convert task id to tensor of labels dim to concatenate
325
+ # task_id = torch.full_like(labels[:, 0], self.task_id)
326
+ # labels = torch.cat((lang_token_ids, task_id, labels), dim=1)
327
+
328
+ # Set language to pad token
329
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
330
+ labels[:, 1] = torch.full_like(labels[:, 1], -100)
331
+ # labels[:, 0] = torch.full_like(labels[:, 0], -100)
332
+ # labels[:, 1] = torch.full_like(labels[:, 1], -100)
333
+
334
+ # remove start of sentence token from labels
335
+ # if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
336
+ # labels = labels[:, 1:]
337
+
338
+ # # add start of sentence token to labels + language + task
339
+ # labels = torch.cat((torch.full_like(labels[:, 0], self.task_id).unsqueeze(0).T, labels), dim=-1)
340
+ # labels = torch.cat((torch.full_like(labels[:, 0], self.language_id).unsqueeze(0).T, labels), dim=-1)
341
+ # labels = torch.cat((torch.full_like(labels[:, 0], self.decoder_start_token_id).unsqueeze(0).T, labels), dim=-1)
342
+
343
+ batch["labels"] = labels
344
+
345
+ return batch
346
+
347
+
348
+ def notify_me(recipient, message=None):
349
+ """
350
+ Send an email to the specified address with the specified message
351
+ """
352
+ sender = os.environ.get("EMAIL_ADDRESS", None)
353
+ password = os.environ.get("EMAIL_PASSWORD", None)
354
+ if sender is None:
355
+ logging.warning("No email address specified, not sending notification")
356
+ if password is None:
357
+ logging.warning("No email password specified, not sending notification")
358
+ if message is None:
359
+ message = "Training is finished!"
360
+
361
+ if sender is not None:
362
+ import smtplib
363
+ from email.mime.text import MIMEText
364
+
365
+ msg = MIMEText(message)
366
+ msg["Subject"] = "Training updates..."
367
+ msg["From"] = "[email protected]"
368
+ msg["To"] = recipient
369
+
370
+ # send the email
371
+ smtp_obj = smtplib.SMTP("smtp.gmail.com", 587)
372
+ smtp_obj.starttls()
373
+ smtp_obj.login(sender, password)
374
+ smtp_obj.sendmail(sender, recipient, msg.as_string())
375
+ smtp_obj.quit()
376
+
377
+
378
+ def rename_col_and_resample(dataset, dataset_name, text_column_names, text_col_name_ref, audio_column_name, sampling_rate):
379
+ raw_datasets_features = list(dataset.features.keys())
380
+ logger.info(f"Dataset {dataset_name} - Features: {raw_datasets_features}")
381
+
382
+ if text_col_name_ref not in raw_datasets_features:
383
+ if len(text_column_names) == 1:
384
+ raise ValueError("None of the text column names provided found in dataset."
385
+ f"Text columns: {text_column_names}"
386
+ f"Dataset columns: {raw_datasets_features}")
387
+ flag = False
388
+ for text_column_name in text_column_names:
389
+ if text_column_name in raw_datasets_features:
390
+ logger.info(f"Renaming text column {text_column_name} to {text_col_name_ref}")
391
+ dataset = dataset.rename_column(text_column_name, text_col_name_ref)
392
+ flag = True
393
+ break
394
+ if flag is False:
395
+ raise ValueError("None of the text column names provided found in dataset."
396
+ f"Text columns: {text_column_names}"
397
+ f"Dataset columns: {raw_datasets_features}")
398
+ if audio_column_name is not None and sampling_rate is not None:
399
+ ds_sr = int(dataset.features[audio_column_name].sampling_rate)
400
+ if ds_sr != sampling_rate:
401
+ dataset = dataset.cast_column(
402
+ audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
403
+ )
404
+
405
+ raw_datasets_features = list(dataset.features.keys())
406
+ raw_datasets_features.remove(audio_column_name)
407
+ raw_datasets_features.remove(text_col_name_ref)
408
+ # Keep only audio and sentence
409
+ dataset = dataset.remove_columns(column_names=raw_datasets_features)
410
+ return dataset
411
+
412
+
413
+ def load_maybe_streaming_dataset(
414
+ dataset_names,
415
+ dataset_config_names,
416
+ split="train",
417
+ streaming=True,
418
+ audio_column_name=None,
419
+ sampling_rate=None,
420
+ **kwargs
421
+ ):
422
+ """
423
+ Utility function to load a dataset in streaming mode. For datasets with multiple splits,
424
+ each split is loaded individually and then splits combined by taking alternating examples from
425
+ each (interleaving).
426
+ """
427
+ text_column_names = None
428
+ if "text_column_name" in kwargs:
429
+ text_column_names = kwargs.pop("text_column_name").split(",")
430
+ text_col_name_ref = text_column_names[0]
431
+
432
+ if "," in dataset_names or "+" in split:
433
+ # load multiple splits separated by the `+` symbol with streaming mode
434
+ dataset_splits = []
435
+ for dataset_name, dataset_config_name, split_names in zip(
436
+ dataset_names.split(","), dataset_config_names.split(","), split.split(",")
437
+ ):
438
+ for split_name in split_names.split("+"):
439
+ if dataset_config_name:
440
+ dataset = load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs)
441
+ else:
442
+ dataset = load_dataset(dataset_name, split=split_name, streaming=streaming, **kwargs)
443
+
444
+ dataset = rename_col_and_resample(
445
+ dataset,
446
+ dataset_name,
447
+ text_column_names,
448
+ text_col_name_ref,
449
+ audio_column_name,
450
+ sampling_rate
451
+ )
452
+
453
+ dataset_splits.append(dataset)
454
+
455
+ # interleave multiple splits to form one dataset
456
+ interleaved_dataset = interleave_datasets(dataset_splits, stopping_strategy="all_exhausted")
457
+ return interleaved_dataset
458
+ else:
459
+ # load a single split *with* streaming mode
460
+
461
+ dataset = load_dataset(dataset_names, dataset_config_names, split=split, streaming=streaming, **kwargs)
462
+ dataset = rename_col_and_resample(
463
+ dataset,
464
+ dataset_names,
465
+ text_column_names,
466
+ text_col_name_ref,
467
+ audio_column_name,
468
+ sampling_rate
469
+ )
470
+ return dataset
471
+
472
+
473
+ def print_data_samples(dataset, tokenizer, max_samples=5):
474
+ shown_samples = 0
475
+ for batch in dataset:
476
+ print("Target: ", tokenizer.decode(batch["labels"]))
477
+ shown_samples += len(batch)
478
+ if shown_samples >= max_samples:
479
+ break
480
+
481
+
482
+ def main():
483
+ # 1. Parse input arguments
484
+ # See all possible arguments in src/transformers/training_args.py
485
+ # or by passing the --help flag to this script.
486
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
487
+ logger.info("*** Parse args ***")
488
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
489
+
490
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
491
+ # If we pass only one argument to the script and it's the path to a json file,
492
+ # let's parse it to get our arguments.
493
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
494
+ else:
495
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
496
+
497
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
498
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
499
+ send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args)
500
+
501
+ # 2. Setup logging
502
+ logger.info("*** Setup logging ***")
503
+ logging.basicConfig(
504
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
505
+ datefmt="%m/%d/%Y %H:%M:%S",
506
+ handlers=[logging.StreamHandler(sys.stdout)],
507
+ )
508
+ log_level = training_args.get_process_log_level()
509
+ logger.setLevel(log_level)
510
+ datasets.utils.logging.set_verbosity(log_level)
511
+ transformers.utils.logging.set_verbosity(log_level)
512
+ transformers.utils.logging.enable_default_handler()
513
+ transformers.utils.logging.enable_explicit_format()
514
+
515
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
516
+
517
+ # Log on each process the small summary:
518
+ logger.warning(
519
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
520
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
521
+ )
522
+ logger.info(f"Training/evaluation parameters {training_args}")
523
+
524
+ # Set the verbosity to info of the Transformers logger (on main process only):
525
+ if is_main_process(training_args.local_rank):
526
+ transformers.utils.logging.set_verbosity_info()
527
+ logger.info("Training/evaluation parameters %s", training_args)
528
+
529
+ # 3. Detecting last checkpoint and eventually continue from last checkpoint
530
+ last_checkpoint = None
531
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
532
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
533
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
534
+ raise ValueError(
535
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
536
+ "Use --overwrite_output_dir to overcome."
537
+ )
538
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
539
+ logger.info(
540
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
541
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
542
+ )
543
+
544
+ # Set seed before initializing model.
545
+ set_seed(training_args.seed)
546
+
547
+ # Load feature extractor
548
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
549
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
550
+ cache_dir=model_args.cache_dir,
551
+ revision=model_args.model_revision,
552
+ use_auth_token=hf_token if model_args.use_auth_token else None,
553
+ )
554
+
555
+ # 4. Load dataset
556
+ logger.info("*** Load dataset ***")
557
+ raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
558
+
559
+ if len(data_args.language_eval.split(",")) > 1:
560
+ raise ValueError("Implementation does not support multiple language evaluation.")
561
+
562
+ if training_args.do_train:
563
+ raw_datasets["train"] = load_maybe_streaming_dataset(
564
+ data_args.dataset_train_name,
565
+ data_args.dataset_train_config_name,
566
+ split=data_args.train_split_name,
567
+ use_auth_token=hf_token if model_args.use_auth_token else None,
568
+ streaming=data_args.streaming,
569
+ text_column_name=data_args.text_column_name,
570
+ audio_column_name=data_args.audio_column_name,
571
+ sampling_rate=int(feature_extractor.sampling_rate),
572
+ # language=data_args.language_train
573
+ )
574
+
575
+ if training_args.do_eval:
576
+ raw_datasets["eval"] = load_maybe_streaming_dataset(
577
+ data_args.dataset_eval_name,
578
+ data_args.dataset_eval_config_name,
579
+ split=data_args.eval_split_name,
580
+ use_auth_token=hf_token if model_args.use_auth_token else None,
581
+ streaming=data_args.streaming,
582
+ text_column_name=data_args.text_column_name,
583
+ audio_column_name=data_args.audio_column_name,
584
+ sampling_rate=int(feature_extractor.sampling_rate),
585
+ # language=data_args.language_eval
586
+ )
587
+
588
+ raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys())
589
+
590
+ if data_args.audio_column_name not in raw_datasets_features:
591
+ raise ValueError(
592
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset. "
593
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
594
+ f"{', '.join(raw_datasets_features)}."
595
+ )
596
+
597
+ data_args.text_column_name = data_args.text_column_name.split(",")[0]
598
+ if data_args.text_column_name not in raw_datasets_features:
599
+ raise ValueError(
600
+ f"--text_column_name {data_args.text_column_name} not found in dataset. "
601
+ "Make sure to set `--text_column_name` to the correct text column - one of "
602
+ f"{', '.join(raw_datasets_features)}."
603
+ )
604
+
605
+ # 5. Load pretrained model, tokenizer, and feature extractor
606
+ logger.info("*** Load pretrained model, tokenizer, and feature extractor ***")
607
+ # Distributed training:
608
+ # The .from_pretrained methods guarantee that only one local process can concurrently
609
+ config = AutoConfig.from_pretrained(
610
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
611
+ cache_dir=model_args.cache_dir,
612
+ revision=model_args.model_revision,
613
+ use_auth_token=hf_token if model_args.use_auth_token else None
614
+ )
615
+
616
+ # Forced decoder ids will be overwritten before evaluation
617
+ config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
618
+
619
+ if training_args.gradient_checkpointing:
620
+ config.update({"use_cache": False})
621
+
622
+ tokenizer = AutoTokenizer.from_pretrained(
623
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
624
+ cache_dir=model_args.cache_dir,
625
+ use_fast=model_args.use_fast_tokenizer,
626
+ revision=model_args.model_revision,
627
+ use_auth_token=hf_token if model_args.use_auth_token else None,
628
+ )
629
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
630
+ model_args.model_name_or_path,
631
+ config=config,
632
+ cache_dir=model_args.cache_dir,
633
+ revision=model_args.model_revision,
634
+ use_auth_token=hf_token if model_args.use_auth_token else None,
635
+ )
636
+
637
+ if model.config.decoder_start_token_id is None:
638
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
639
+
640
+ if model_args.freeze_feature_encoder:
641
+ model.freeze_feature_encoder()
642
+
643
+ if model_args.freeze_encoder:
644
+ model.freeze_encoder()
645
+
646
+ tokenizer.set_prefix_tokens(language="swedish", task=data_args.task)
647
+
648
+ # if data_args.language_train is not None and len(data_args.language_train.split(",")) == 1:
649
+ # # We only need to set the task id when the language is specified (i.e. in a multilingual setting)
650
+ # # If more than a langugae is specified, it will be specified in the data collator
651
+ # tokenizer.set_prefix_tokens(language=data_args.language_train, task=data_args.task)
652
+ # elif data_args.language_train is not None and len(data_args.language_train.split(",")) > 1:
653
+ # # make sure language and task are not stored in the model config
654
+ # model.config.forced_decoder_ids = None
655
+
656
+ # 6. Resample speech dataset if necessary
657
+ # logger.info("*** Resample dataset ***")
658
+ # dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
659
+ # if dataset_sampling_rate != feature_extractor.sampling_rate:
660
+
661
+
662
+ # 7. Preprocessing the datasets.
663
+ # We need to read the audio files as arrays and tokenize the targets.
664
+ logger.info("*** Preprocess dataset ***")
665
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
666
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
667
+ audio_column_name = data_args.audio_column_name
668
+ text_column_name = data_args.text_column_name
669
+ model_input_name = feature_extractor.model_input_names[0]
670
+ do_lower_case = data_args.do_lower_case
671
+ do_remove_punctuation = data_args.do_remove_punctuation
672
+ normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
673
+
674
+ if data_args.max_train_samples is not None:
675
+ raw_datasets["train"] = (
676
+ raw_datasets["train"].take(data_args.max_train_samples)
677
+ if data_args.streaming
678
+ else raw_datasets["train"].select(range(data_args.max_train_samples))
679
+ )
680
+
681
+ if data_args.max_eval_samples is not None:
682
+ raw_datasets["eval"] = (
683
+ raw_datasets["eval"].take(data_args.max_eval_samples)
684
+ if data_args.streaming
685
+ else raw_datasets["eval"].select(range(data_args.max_eval_samples))
686
+ )
687
+
688
+ def prepare_dataset(batch):
689
+ # process audio
690
+ sample = batch[audio_column_name]
691
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
692
+ # process audio length
693
+ batch[model_input_name] = inputs.get(model_input_name)[0]
694
+ batch["input_length"] = len(sample["array"])
695
+
696
+ # process targets
697
+ input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
698
+ if do_remove_punctuation:
699
+ input_str = normalizer(input_str).strip()
700
+ batch["labels"] = tokenizer(input_str).input_ids
701
+ return batch
702
+
703
+ with training_args.main_process_first(desc="dataset map pre-processing"):
704
+ # raw_datasets_features.remove("language")
705
+ vectorized_datasets = raw_datasets.map(
706
+ prepare_dataset,
707
+ remove_columns=raw_datasets_features,
708
+ ).with_format("torch")
709
+
710
+ if training_args.do_train and data_args.streaming:
711
+ # manually shuffle if streaming (done by the trainer for non-streaming)
712
+ vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
713
+ buffer_size=data_args.shuffle_buffer_size,
714
+ seed=training_args.seed,
715
+ )
716
+
717
+ # filter training data that is shorter than min_input_length or longer than
718
+ # max_input_length
719
+ def is_audio_in_length_range(length):
720
+ return min_input_length < length < max_input_length
721
+
722
+ if training_args.do_train:
723
+ vectorized_datasets["train"] = vectorized_datasets["train"].filter(
724
+ is_audio_in_length_range,
725
+ input_columns=["input_length"],
726
+ )
727
+
728
+ # 8. Load Metric
729
+ logger.info("*** Load metric ***")
730
+ metric = evaluate.load("wer")
731
+ do_normalize_eval = data_args.do_normalize_eval
732
+
733
+ def compute_metrics(pred):
734
+ pred_ids = pred.predictions
735
+
736
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
737
+
738
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
739
+ # we do not want to group tokens when computing the metrics
740
+ label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
741
+
742
+ if do_normalize_eval:
743
+ pred_str = [normalizer(pred) for pred in pred_str]
744
+ label_str = [normalizer(label) for label in label_str]
745
+ # filtering step to only evaluate the samples that correspond to non-zero references:
746
+ pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0]
747
+ label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0]
748
+
749
+ wer = 100 * metric.compute(predictions=pred_str, references=label_str)
750
+
751
+ return {"wer": wer}
752
+
753
+ # 9. Create a single speech processor
754
+ logger.info("*** Init processor ***")
755
+ if is_main_process(training_args.local_rank):
756
+ # save feature extractor, tokenizer and config
757
+ feature_extractor.save_pretrained(training_args.output_dir)
758
+ tokenizer.save_pretrained(training_args.output_dir)
759
+ config.save_pretrained(training_args.output_dir)
760
+
761
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
762
+
763
+ # 10. Define data collator
764
+ task_token = data_args.task
765
+ if not task_token.startswith('<|'):
766
+ task_token = f'<{task_token}>'
767
+ task_id = tokenizer(task_token).input_ids[0]
768
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
769
+ processor=processor,
770
+ decoder_start_token_id=model.config.decoder_start_token_id,
771
+ task_id=task_id
772
+ )
773
+
774
+ # 11. Configure Trainer
775
+ # Trainer callback to reinitialise and reshuffle the streamable datasets at the beginning of each epoch
776
+ # Only required for streaming: Trainer automatically shuffles non-streaming datasets
777
+ logger.info("*** Set shuffle callback ***")
778
+ class ShuffleCallback(TrainerCallback):
779
+ def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
780
+ if isinstance(train_dataloader.dataset, IterableDatasetShard):
781
+ pass # set_epoch() is handled by the Trainer
782
+ elif isinstance(train_dataloader.dataset, IterableDataset):
783
+ train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
784
+
785
+
786
+ # Initialize Trainer
787
+ logger.info("*** Init trainer ***")
788
+ trainer = Seq2SeqTrainer(
789
+ model=model,
790
+ args=training_args,
791
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
792
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
793
+ tokenizer=feature_extractor,
794
+ data_collator=data_collator,
795
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
796
+ callbacks=[ShuffleCallback()] if data_args.streaming else None,
797
+ )
798
+ logger.info("*** Trainer initialized ***")
799
+
800
+ orig_push_to_hub = trainer.args.push_to_hub
801
+ trainer.args.push_to_hub = False
802
+
803
+ # 12. Training
804
+ if training_args.do_train:
805
+ logger.info("*** Train ***")
806
+ print_data_samples(vectorized_datasets["train"], tokenizer)
807
+ checkpoint = None
808
+ if training_args.resume_from_checkpoint is not None:
809
+ checkpoint = training_args.resume_from_checkpoint
810
+ elif last_checkpoint is not None:
811
+ checkpoint = last_checkpoint
812
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
813
+ logger.info("*** Training completed ***")
814
+ logger.info("*** Saving model ***")
815
+ # We don't want to push the model to the hub now
816
+ # so we temporarily set to false the push_to_hub attribute
817
+ # and then reset it to the original value
818
+ trainer.save_model() # Saves the feature extractor too for easy upload
819
+ logger.info("*** Model saved ***")
820
+ metrics = train_result.metrics
821
+ if data_args.max_train_samples:
822
+ metrics["train_samples"] = data_args.max_train_samples
823
+ logger.info("*** Logging metrics ***")
824
+ trainer.log_metrics("train", metrics)
825
+ logger.info("*** Metrics logged ***")
826
+ logger.info("*** Saving metrics ***")
827
+ trainer.save_metrics("train", metrics)
828
+ logger.info("*** Metrics saved ***")
829
+ logger.info("*** Saving state ***")
830
+ trainer.save_state()
831
+ logger.info("*** State saved ***")
832
+
833
+ # Run a test prediction to check outputs
834
+ predictions = trainer.predict(
835
+ test_dataset=vectorized_datasets["eval"].shuffle(seed=training_args.seed).take(5),
836
+ metric_key_prefix="test",
837
+ max_length=training_args.generation_max_length,
838
+ num_beams=training_args.generation_num_beams,
839
+ )
840
+ logger.info("*** Test prediction done ***")
841
+ preds = tokenizer.batch_decode(predictions.predictions)
842
+ labels = tokenizer.batch_decode(predictions.label_ids)
843
+ pred_labels = [f"Prediction: {pred}\nLabel: {label}\n" for pred, label in zip(preds, labels)]
844
+ logger.info("Before setting language and task")
845
+ logger.info(f"{pred_labels}")
846
+ language_name = LANGUAGES[data_args.language_eval]
847
+ trainer.model.config.forced_decoder_ids = \
848
+ tokenizer.get_decoder_prompt_ids(language=language_name, task=data_args.task, no_timestamps=True)
849
+ preds = tokenizer.batch_decode(predictions.predictions)
850
+ labels = tokenizer.batch_decode(predictions.label_ids)
851
+ pred_labels = [f"Prediction: {pred}\nLabel: {label}\n" for pred, label in zip(preds, labels)]
852
+ logger.info("After setting language and task")
853
+ logger.info(f"{pred_labels}")
854
+
855
+ # 13. Evaluation
856
+ results = {}
857
+ if training_args.do_eval:
858
+ logger.info("*** Evaluate ***")
859
+ print_data_samples(vectorized_datasets["eval"], tokenizer)
860
+ metrics = trainer.evaluate(
861
+ metric_key_prefix="eval",
862
+ max_length=training_args.generation_max_length,
863
+ num_beams=training_args.generation_num_beams,
864
+ )
865
+ logger.info("*** Evaluation done ***")
866
+ if data_args.max_eval_samples:
867
+ metrics["eval_samples"] = data_args.max_eval_samples
868
+ logger.info("*** Logging metrics ***")
869
+ trainer.log_metrics("eval", metrics)
870
+ logger.info("*** Metrics logged ***")
871
+ logger.info("*** Saving metrics ***")
872
+ trainer.save_metrics("eval", metrics)
873
+ logger.info("*** Metrics saved ***")
874
+
875
+ # 14. Write Training Stats
876
+ logger.info("*** Writing training stats ***")
877
+ kwargs = {
878
+ "finetuned_from": model_args.model_name_or_path,
879
+ "tasks": "automatic-speech-recognition",
880
+ "tags": "whisper-event",
881
+ }
882
+ if data_args.dataset_train_name is not None:
883
+ dataset_names = list(data_args.dataset_train_name.split(","))
884
+ kwargs["dataset_tags"] = dataset_names
885
+ # if data_args.dataset_train_config_name is not None:
886
+ # dataset_config_names = list(data_args.dataset_train_config_name.split(","))
887
+ # dataset_config_names_list = [f"{ds_name} {ds_cfg_name}" for ds_name, ds_cfg_name in zip(dataset_names, dataset_config_names)]
888
+ # else:
889
+ # dataset_config_names_list = dataset_names
890
+ # kwargs["dataset"] = "\n".join(dataset_config_names_list)
891
+ # if "common_voice" in data_args.dataset_name:
892
+ # kwargs["language"] = data_args.dataset_config_name[:2]
893
+ if data_args.language_train is not None:
894
+ languages = list(set(data_args.language_train.split(",")))
895
+ kwargs["language"] = languages
896
+ if model_args.model_index_name is not None:
897
+ kwargs["model_name"] = model_args.model_index_name
898
+
899
+ logger.info("*** Training stats written ***")
900
+ logger.info(json.dumps(kwargs, indent=4))
901
+
902
+ # Training complete notification
903
+ logger.info("*** Training and eval complete ***")
904
+ logger.info(SENDING_NOTIFICATION)
905
+ with open(os.path.join(training_args.output_dir, "train_results.json"), "r") as f:
906
+ train_results = json.load(f)
907
+ with open(os.path.join(training_args.output_dir, "eval_results.json"), "r") as f:
908
+ eval_results = json.load(f)
909
+ notify_me(recipient=RECIPIENT_ADDRESS,
910
+ message=f"Training complete! {train_results = } {eval_results = }")
911
+
912
+ trainer.args.push_to_hub = orig_push_to_hub
913
+ if training_args.push_to_hub:
914
+ logger.info("*** Pushing to hub ***")
915
+ trainer.push_to_hub(**kwargs)
916
+ logger.info("*** Pushed to hub ***")
917
+ logger.info(SENDING_NOTIFICATION)
918
+ else:
919
+ logger.info("*** Creating model card ***")
920
+ trainer.create_model_card(**kwargs)
921
+ logger.info("*** Model card created ***")
922
+ logger.info(SENDING_NOTIFICATION)
923
+
924
+ with open(os.path.join(training_args.output_dir, "README.md"), "r") as f:
925
+ readme = f.read()
926
+ notify_me(recipient=RECIPIENT_ADDRESS,
927
+ message=f"Model pushed to hub! {readme = }")
928
+
929
+ return results
930
+
931
+
932
+ if __name__ == "__main__":
933
+ main()