File size: 2,118 Bytes
6428a1c d1920eb 6428a1c d1920eb 6428a1c d1920eb 6428a1c d1920eb 6428a1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Llama-2-7B-fp16
model-index:
- name: Saiga_timelist_task30steps
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Saiga_timelist_task30steps
This model is a fine-tuned version of [TheBloke/Llama-2-7B-fp16](https://huggingface.co/TheBloke/Llama-2-7B-fp16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0384
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2298 | 0.37 | 2 | 2.2027 |
| 2.0986 | 0.74 | 4 | 2.1505 |
| 2.0278 | 1.11 | 6 | 2.1167 |
| 1.9954 | 1.48 | 8 | 2.0915 |
| 1.9696 | 1.85 | 10 | 2.0753 |
| 1.8978 | 2.22 | 12 | 2.0648 |
| 1.9246 | 2.59 | 14 | 2.0564 |
| 1.9361 | 2.96 | 16 | 2.0506 |
| 1.895 | 3.33 | 18 | 2.0470 |
| 1.8525 | 3.7 | 20 | 2.0442 |
| 1.8912 | 4.07 | 22 | 2.0419 |
| 1.8689 | 4.44 | 24 | 2.0400 |
| 1.9054 | 4.81 | 26 | 2.0390 |
| 1.8537 | 5.19 | 28 | 2.0384 |
| 1.8501 | 5.56 | 30 | 2.0384 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |