--- library_name: transformers tags: - generated_from_trainer - transformers - bert - text-classification model-index: - name: ModernBERT-base-2-contract-sections-classification-v4-50-max results: [] license: apache-2.0 datasets: - marcelovidigal/contract-sections-with-labels-for-text-classification-v4 language: - pt base_model: - answerdotai/ModernBERT-base --- [Visualize in Weights & Biases](https://wandb.ai/mvgdr/classificacao-secoes-contratos-v4-modernbert-base/runs/oph1v3zp) [Visualize in Weights & Biases](https://wandb.ai/mvgdr/classificacao-secoes-contratos-v4-modernbert-base/runs/yh87i0fl) # ModernBERT-base-2-contract-sections-classification-v4-50-max This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4092 - Accuracy Evaluate: 0.9244 - Precision Evaluate: 0.9280 - Recall Evaluate: 0.9266 - F1 Evaluate: 0.9265 - Accuracy Sklearn: 0.9244 - Precision Sklearn: 0.9252 - Recall Sklearn: 0.9244 - F1 Sklearn: 0.9239 - Acuracia Rotulo Objeto: 0.9563 - Acuracia Rotulo Obrigacoes: 0.9496 - Acuracia Rotulo Valor: 0.8311 - Acuracia Rotulo Vigencia: 0.9792 - Acuracia Rotulo Rescisao: 0.9441 - Acuracia Rotulo Foro: 0.9048 - Acuracia Rotulo Reajuste: 0.8922 - Acuracia Rotulo Fiscalizacao: 0.8485 - Acuracia Rotulo Publicacao: 0.9885 - Acuracia Rotulo Pagamento: 0.8829 - Acuracia Rotulo Casos Omissos: 0.9103 - Acuracia Rotulo Sancoes: 0.9722 - Acuracia Rotulo Dotacao Orcamentaria: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:------------------:|:---------------:|:-----------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------------:|:--------------------------:|:---------------------:|:------------------------:|:------------------------:|:--------------------:|:------------------------:|:----------------------------:|:--------------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------------------------:| | No log | 1.0 | 250 | 0.4141 | 0.9231 | 0.9252 | 0.9261 | 0.9254 | 0.9231 | 0.9231 | 0.9231 | 0.9229 | 0.9454 | 0.9419 | 0.8514 | 0.9792 | 0.9371 | 0.9048 | 0.8824 | 0.8409 | 1.0 | 0.9009 | 0.8974 | 0.9722 | 0.9863 | | 0.357 | 2.0 | 500 | 0.4528 | 0.9194 | 0.9218 | 0.9253 | 0.9228 | 0.9194 | 0.9207 | 0.9194 | 0.9192 | 0.9508 | 0.9147 | 0.8311 | 0.9792 | 0.9371 | 0.9048 | 0.9020 | 0.8485 | 1.0 | 0.8919 | 0.9103 | 0.9722 | 0.9863 | | 0.357 | 3.0 | 750 | 0.4269 | 0.925 | 0.9312 | 0.9270 | 0.9282 | 0.925 | 0.9262 | 0.925 | 0.9246 | 0.9617 | 0.9574 | 0.8243 | 0.9653 | 0.9441 | 0.9238 | 0.8824 | 0.8409 | 1.0 | 0.8829 | 0.9103 | 0.9722 | 0.9863 | | 0.2319 | 4.0 | 1000 | 0.4197 | 0.9244 | 0.9283 | 0.9269 | 0.9267 | 0.9244 | 0.9252 | 0.9244 | 0.9238 | 0.9672 | 0.9457 | 0.8311 | 0.9792 | 0.9371 | 0.9048 | 0.8922 | 0.8409 | 1.0 | 0.8829 | 0.9103 | 0.9722 | 0.9863 | | 0.2319 | 5.0 | 1250 | 0.4375 | 0.92 | 0.9191 | 0.9246 | 0.9209 | 0.92 | 0.9213 | 0.92 | 0.9198 | 0.9617 | 0.9225 | 0.8311 | 0.9722 | 0.9301 | 0.9048 | 0.8922 | 0.8561 | 0.9885 | 0.8919 | 0.9103 | 0.9722 | 0.9863 | | 0.1568 | 6.0 | 1500 | 0.4203 | 0.9225 | 0.9232 | 0.9259 | 0.9239 | 0.9225 | 0.9232 | 0.9225 | 0.9222 | 0.9563 | 0.9380 | 0.8311 | 0.9792 | 0.9371 | 0.9048 | 0.8922 | 0.8485 | 0.9885 | 0.8919 | 0.9103 | 0.9722 | 0.9863 | | 0.1568 | 7.0 | 1750 | 0.4056 | 0.9275 | 0.9294 | 0.9300 | 0.9289 | 0.9275 | 0.9280 | 0.9275 | 0.9270 | 0.9563 | 0.9419 | 0.8446 | 0.9861 | 0.9650 | 0.9048 | 0.8922 | 0.8409 | 0.9885 | 0.9009 | 0.9103 | 0.9722 | 0.9863 | | 0.1107 | 8.0 | 2000 | 0.4097 | 0.9263 | 0.9289 | 0.9282 | 0.9278 | 0.9263 | 0.9267 | 0.9263 | 0.9257 | 0.9563 | 0.9535 | 0.8378 | 0.9861 | 0.9371 | 0.9143 | 0.8824 | 0.8409 | 0.9885 | 0.9009 | 0.9103 | 0.9722 | 0.9863 | | 0.1107 | 9.0 | 2250 | 0.4176 | 0.9237 | 0.9266 | 0.9265 | 0.9259 | 0.9237 | 0.9244 | 0.9237 | 0.9233 | 0.9563 | 0.9457 | 0.8311 | 0.9792 | 0.9371 | 0.9048 | 0.9020 | 0.8485 | 0.9885 | 0.8829 | 0.9103 | 0.9722 | 0.9863 | | 0.0923 | 10.0 | 2500 | 0.4092 | 0.9244 | 0.9280 | 0.9266 | 0.9265 | 0.9244 | 0.9252 | 0.9244 | 0.9239 | 0.9563 | 0.9496 | 0.8311 | 0.9792 | 0.9441 | 0.9048 | 0.8922 | 0.8485 | 0.9885 | 0.8829 | 0.9103 | 0.9722 | 0.9863 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0