--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-speech-commands-v2 tags: - generated_from_trainer datasets: - audiofolder metrics: - precision - recall - f1 model-index: - name: ast-finetuned-en-alphabets results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Precision type: precision value: 0.9650943396226415 - name: Recall type: recall value: 0.9481132075471698 - name: F1 type: f1 value: 0.9476170056358736 --- # ast-finetuned-en-alphabets This model is a fine-tuned version of [MIT/ast-finetuned-speech-commands-v2](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1933 - Precision: 0.9651 - Recall: 0.9481 - F1: 0.9476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.3705 | 1.0 | 113 | 0.2441 | 0.9566 | 0.9434 | 0.9432 | | 0.1728 | 2.0 | 226 | 0.1617 | 0.9608 | 0.9481 | 0.9478 | | 0.0321 | 3.0 | 339 | 0.1838 | 0.9651 | 0.9481 | 0.9476 | | 0.011 | 4.0 | 452 | 0.1933 | 0.9651 | 0.9481 | 0.9476 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0